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It is shown how orthogonal compact-support multiwavelets may be used for the
solution of quantum mechanical eigenvalue problems subject to specific boundary
conditions. Special scaling functions and wavelets with convenient limiting behaviors
atthe edges of aninterval are constructed in analogy to earlier work on single wavelet
families. All of the integrals required for Hamiltonian matrix elements, involving both
regular and edge functions, are calculated efficiently through use of recursion and
quadrature methods. It is demonstrated through accurate eigenvalue determination
that both Cartesian and curvilinear degrees of freedom are readily accommodated
with such a basis, using as examples the particle in a box and the hydrogen atom in
spherical polar coordinates. © 2001 Academic Press
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I. INTRODUCTION

The introduction of compact support wavelets by Daubechies [17, 18] raised the prosy
of solving partial differential equations with functions resembling finite elements, but wi
automatic orthogonality and multiresolution properties. Previously, the development of g
eral algorithms based on orthogonal functions providing highly customizable resoluti
would have seemed fantastic. At present, it merely seems difficult. A great deal of progr
has occurred in the last several years. For example, many different varieties of such wa
families [44] have now been derived, methods for calculation of integrals have been de
oped [4, 16, 34, 38, 51], and there are efficient means for dealing with operators expre:s
in multiscale bases [5]. Early applications naturally gravitated toward differential equatic
with strongly specific local behavior, e.g., differential equations modeling shock wave fror
in fluids [25, 39, 41, 43, 56], which may be solved by Wavelet-Galerkin [25, 39, 41, 53, 5
71] or Wavelet Collocation [3, 61, 62] methods.
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Our specific interest is in the application to quantum mechanical problems involvi
atoms and molecules, for which much the same numerical machinery is needed. A n
ber of quantum mechanical wavelet investigations have already been undertaken [:
9, 20-23, 26-29, 31, 34, 49, 60, 65, 66], though some of these studies have prefe
nonorthogonal wavelets for reasons concerning sampling properties, smoothness, ar
forth. Presently, somewhat ironically, one is probably more limited in the ability to u:
the orthogonal compact-support wavelets, even though these are the functions that fi
the initial widespread interest in wavelet applications. For example, it was not until 19
(to our knowledge) that it was even demonstrated that Daubechies wavelets could be
systematically in accurate eigenvalue determination for Hamiltonians with general clas
of potentials [49]. There are still residual issues however. The combination of orthogona
and compact support properties disallows symmetry of the basis functions [18], leac
unavoidably to either a left or right bias on the support. Moreover, wavelets are ger
ally defined along infinitely long Cartesian axes. This ignores the large number of physi
problems most naturally expressed in curvilinear coordinates, as well as Cartesian prob
possessing hard potential walls.

The issue of left—right democracy may be handled by adopting one of the wavelet v
ations that accommodates both compact support and symmetry properties. One of
biorthogonal wavelets, would unfortunately require giving up the hermiticity of the Hami
tonian matrix. Another variation, multiwavelets, offers symmetry, greater localization, a
hermiticity at the price of increasing the number of distinct functional shapes to be incluc
in the basis. Currently, the primary handicap to the use of multiwavelets is probably ¢
of examples of their use, one of the problems addressed in this paper. The specific ct
made here is the multiwavelet family of Chui and Lian [10], symmetric and antisymmet
pairs of functions defined on the interval [0,3]. All of the necessary tools for calculation
the kinetic and potential energy matrix elements with this basis are given below, provid
a multiwavelet generalization of results for the single (or scalar) wavelet families [4, ]
34, 38, 54].

The issue of curvilinear coordinates is important throughout a huge variety of electro
and nuclear applications. One finds use made of spherical, parabolic, elliptical, and o
coordinates [52] in atomic physics, as well as radial and angular variables from vale
bond, Jacobi, hyperspherical [58], Radau [35], and several other types of coordinates ar
in molecular physics. In special cases, curvilinear coordinates are used because they al
separation of variables, but they are also frequently used because they simplify nonsepa
multidimensional problems (e.g., for reasons of symmetry). The lack of compact supr
wavelets constructed specifically for use with curvilinear coordinates has appeared to
general limitation of wavelet techniques. In many cases, however, the differences offe
by curvilinear coordinates can be reduced to (i) a restriction of the domain of definiti
to either a half-line or a finite interval and (ii) simple algebraic singularities at the doma
edge(s). The first point also occurs in Cartesian problems, such as the particle in a box
which the potential restricts motion to a finite interval. For single wavelet systems [2, !
13, 46, 50, 51] and, more recently, for biorthogonal multiwavelets [14], special functio
have been constructed that complement the regular basis functions in order to adap
multiresolution analysis adapted to a fixed interval. This approach is complementary
the recent body of work on the use of Wavelet-Galerkin methods for partial different
equations in bounded domains [7, 8, 11, 15, 19, 24, 36, 37, 63, 67].
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In this paper, a method similar to that of Monasse and Perrier [51] is used to constr
edge functions for the Chui-Lian multiwavelet basis. These “multiwavelets on the interv:
are suited to the satisfaction of one- and two-point boundary conditions for the exa
ple quantum systems—the particle in a box and the angular and radial equations ari
from the separation of variables for the hydrogen atom—and many others. It has not b
possible previously to obtain eigenvalues for such problems with more than a few dic
of accuracy, even using single orthogonal wavelet families, much less multiwavelets. T
basis will also provide tailored resolution in solutions of the time-dependenb8iciger
equation in curvilinear coordinates. The price we must pay for all this is the evaluati
of a significant number of key integrals involving differential and local operators and i
volving Chui-Lian functions and their edge counterparts, even though symmetry proper
are used as much as possible to reduce the number of independent integrals reqt
While these first demonstrations are specific to the Chui-Lian multiwavelet family, it
expected that such evaluations for other wavelet or multiwavelet families can be larg
automated.

II. MULTIWAVELETS ON THE FULL LINE

The two scaling functiongps (X), ¢2(X)} and the two waveletsy(x), ¥2(x)} defined
by Chui and Lian are shown in Fig. 1. All of these functions have ufibarm. Letting

1.0 ¢, (0 1 9, ()
0.5 — 0 —
0.0 — -1 —
I | I I I I
0 1 2 3 0 1 2 3
X X
14
v, () 1 - v, ()
0 — 0
-1 4 -1
I I I I I I
0 1 2 3 0 1 2 3
X X

FIG. 1. Scaling functions and wavelets of the Chui—Lian multiwavelet family on the interval [0,3].
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é = (¢1, P2)" andlﬁ = (Y1, ¥») ', these vectors obey the two-scale relations

3
P00 = cp(2x — k), €Y
k=0
~ 3 ~
Y0 = dkp(@x —k), @)
k=0

representing a matrix version of the relations obeyed by the Daubechies wavelet famil
The coefficientscy anddy are 2x 2 constant matrices given in the Appendix. Square
normalized copies of these functions that are squeezed®yand shifted byk/2! for
integral j andk are given by

Pika () = 229, (21X — k), €)
Vike () = 2129, (2 x — K). @
A complete orthonormal basis can be specified by choosing a coarsest scale, which we

denote for convenience gs= 0, and including allj = 0 scaling functions and ajl > 0
wavelets. Thus, a functiofi(x) expanded in this set takes the form

+00 400
foo = Z Z ok | Floa )+ Y > Z Vike | D)¥ika).  (5)
k=—o00 a=1 j=0 k=—00 =1

(In the following we shall use the conventions that two subscripts impglieso, i.e.,
Pka = Poke ANAY, = Yoka, While one subscript implies = 0 andk = 0, i.e.,¢, = doax
and vy, = ¥oq,.) Finite basis calculations are then implemented by retaining only son
maximum numbed of scales (O< j < J) and restricting each sum oveto include only
those values in a region or regions of interest,

J—

2 2
FOORY Y e | D)0+ DD D Wika | ) Yrjka (). (6)
k

k a=1 j=0 a=1

[uy

A constraint that enters into the constuction of the multiwavelet system is that Eq. (1) r
resents coarsening (lowpass filtering), and Eq. (2) represents selection of details (high
filtering). This is partially ensured by requiring that the multiwavelgisare orthogonal
to low-order polynomials. As a consequence, these polynomials are precisely contai
within the space of the scaling functions. We have the exact equality

2
POO =Y (¢ | P) dra(), ™

k a=1

provided thatP (x) is at most a quadratic polynomial. The Chui-Lian multiwavelet family
is said to be ofapproximation ordeithree since the three powex$, x*, andx? can be

exactly expressed as linear combinations of the multiscaling functions [10]. Evaluatior
the projections of powers onto the multiscaling functions can be accomplished by use
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Eqg. (1), as shown in a separate paper [32]. We define the moments

mpa(fc)=/dxxp%(X—fc)=/dX(X+K)"¢a(X), (8)

where the shifk is not necessarily integral. Then Eq. (1) implies that the vector equatio!
~ mpl 1 P P ~
o) = ( e ) 69 = 35 ;) o ) Hp-p (M () ©)

must be satisfied, where the matrix
1 3
pp) = 5 gcku +kP (10)

is easily calculated. In the particular cgse= 0, Eq. (9) reduces to
Mo = po - Mo, (11)

i.e.,Mp is an eigenvector ofiy with eigenvalue 1. For the current multiwavelets, the initial
moments are given byy"= [1, 0]", independent of. All higher projections follow from
Eg. (9). By choosingc = —3/2, symmetry gives the simplifications that odd moments
vanish fore = 1 and even moments vanish f@r= 2. The first few nonzero moments are
given in Table I. For more general the moments may be calculated in terms of these:

m _ (4 3 3\"
pa(K)—/ X<X—2+x+2) o (X)

() (D) fax(x-2)

p=0

EOEY ) e

p=0

TABLE |
Lowest-Order Nonzero Moments of the Chui-Lian Scaling Functions forx = —3/2

p Mpp1(=3/2) Map11.2(—3/2)

0 1 \/Eg NG

N 7 — 210 319V/15 — 505/6
12 1992

5 1011 — 324/10 24937441/15 — 40418461/6
1328 105392736

3 199096521 63748426/10 134913228941315 — 2159493518896

163944256 3384231014784
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III. MULTISCALING FUNCTIONS ON THE INTERVAL

For situations where itis desired to use a basis restricted to a finite or semi-infinite inter
most orthogonal wavelet families are deficient. The problem comes from the stagge
supports of the scaling functions and wavelets. There will always be some basis funct
which straddle any boundary. Retaining such basis functions is not appropriate since |
have tails outside the region of interest (with longer tails for coarser scales). On the of
hand, neglecting them is also inappropriate since the tails inside the region are critical
the basis to reproduce low-order polynomials near the edges. A common workaround
a finite interval is to use periodized scaling functions and wavelets which wrap around
domain edges [59]. However, this has the undesirable effect of artificially destroying so
of the very localization which was such an appealing aspect of wavelet bases.

An alternative pursued by Meyer [46] was to include just the inner tails as independ
basis functions, but these were not generally orthogonal to each other and were subje
problems of numerical precision. Subsequent work by Cehah[12, 13], showed how to
use the restrictions of the primitive edge scaling functions and wavelets in linear combina
to obtain special edge functions orthogonal both to each other and to all the basis funct
away from the edge. Monasse and Perrier [50, 51], extending results of Auscher [2], sho
a similar construction which gave special edge functions adapted naturally to the solutio
particular (e.g., Dirichlet or Neuman) differential equation boundary conditions. The Iati
approach is further extended in the present paper to orthogonal multiwavelets, work
with the specific case of the Chui—Lian family and specializing to boundary conditio
commonly met in the standard problems of quantum mechanics.

We start by considering a left-hand boundary situatexi &t0. The functionspy, and
Yk for k > 0 are entirely to the right, while those far= —1 and—2 straddle the origin.
The monomial expansions take the forms

2
xP = Z Z mpa(k)¢ka(x), p=0,12 (13)

a=1 k

If the sum ovek in Eq. (13) starts gt = 0, then the equality holds for atl > 2. To obtain
equality for allx >0, we only need to add the right-hand tails of the- —1 and—2
functions. In terms of the Heaviside functiGn’x) = 1 forx > 0, 0 forx < 0O,

o0

2
O0OXP =D Y Mp (O (X (X). (14)

k=—2a=1

At least three edge scaling functions are needed to restore approximation order thre
all x >0. We choose these to be of the same length as the other scaling functions, ha
support [0, 3]. In analogy to the scalar wavelet procedure adopted by @héfl 3], the

k = 0 functions (for which [0, 3] is the support) are borrowed for this purpose instead
being included in the set of regular scaling functions. Thus, in terms of the three indepenc
left-hand edge functions,

0 2

Pp00 =D > Mpa (KO (X) iy (X), (15)

k=—2a=1
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Eq. (14) can be rewritten as

2

OOOXP = 5 () + > > Mpy (K)pra (X). (16)

k=1 a=1

These functions are orthogonal to all of thg, for k > 1 by construction, but they are not
orthogonal to each other. It is first necessary to find the overlap matrix with integratic
restricted tax > 0,

Mepica = / dX O (X) ez ()i (). 17)

Using the recursion relation in Eq. (1) for both scaling functions leads to the identity

3 2 3 2
A pika = % Z Z Z Z Ce, 8,5k v, A2+, 13 2k4K o - (18)

=0 p'=1k=0as=1

All integrals for which either of the first or third subscriptsss0 reduce to the standard
orthogonality integrals. Equations (18) then become a series of inhomogeneous equat
for those with both subscripts <0. Solving for these truncated integrals yields the vall
appearing in Table 1. According to Eq. (15), the overlaps amon@ip‘me) are then given by

Sop = /dx¢b,(x)¢";(x)

2 0

0 2
=D DD D Mes(OMpa(K) gk (19)

t=—2 p=1k=—2 a=1

TABLE Il
Upper Triangle Overlap Matrix Elements A, g for k, £ < 0

Z ﬂ k o )‘fyﬁ;k,ﬂ

-2 1 -2 1 10 - 3v10
40

> 1 5 5 4715 — 706
750

) 1 -1 1 0

-2 1 -1 2 —35v6 — 14V15
9000

» ) > ; 710 — 209/10
3000

i ) 1 1 —35/6 — 14/15
9000

-2 2 -1 2 0

-1 1 -1 1 M)
40

4715 — 706
-1 1 -1 2 —

2290 + 209/10
3000
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This matrix takes the simple form

2 27-4/10 11-+/10
12 3
L _ | 27-v10 11— /10 1276— 185/10
S = 12 3 180 : (20)

11-+/10 1276— 185/10 136— 26110
3 180 9

The final step in constructing edge scaling functions is to make them orthogonal to e
other. Monasse and Perrier discuss the possibility of different choices based on diffe
types of boundary conditions (e.g., Dirichlet or Neuman). Our particular interest is to L
these functions for second-order differential equations of quantum mechanics, in which ¢
it is frequently convenient to be able to specify the wave function’s lowest-order (indici
power of x asx — 0. It is therefore natural for our purposes to start Gramm-Schmi
orthogonalization with the® function, orthogonalize th&® function with respect to fit,
and then to orthogonalize th@ solution to the previous two. Defining the orthogonalizeo
functions to bed\ (x),n = 0, 1, 2, we have

oL =Tot, (21)
where

2.183415683967980 —4.591492847717150 .99499064944675
T= 0 2.612321037529930 —1.678162710805578, (22)
0 0 040907948734512

and wherdl is upper-diagonal. The resulting orthogonal edge functions are shown in Fig
The recursion satisfied by the edge scaling functions is necessarily mixed with the reg
scaling functions. This can be seen by tracking back through the cumulative transformat
to the definitions of the scaling function tails, for which Eg. (1) applies. We use the notati
X[0,31(X) for the unit pulse between 0 and 3, i.©.(x)®(3 — x). Using Egs. (1), (16), and

FIG. 2. Orthogonal left-hand edge scaling functioh$(x) behaving ax" nearx = 0.
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the inverse of Eq. (21" = T-1dL, we find

2 2
D) =Y Tophp () = Xp0.g00 D Tap|XP = D> Mpe (K)o (X — k)]
p p

k=1 a=1

o]

1 1 2
= X10.3(X) Z Top 55 $5(20 + Z Toogg D D Mpa(K)pa (2 — k)

k=1 a=1

—ZTanZmpa(k)Zcha oo (2X — 2K — k’)]

k=1 a=1 =0a'=1

= Z Anp®(2X) + Z Z Briku b (2X — K), (23)

k=1 a=1
where

1 0.8788148129103263—-0.052431713197289
A=1|0 0.5 1025572512628694 | , (24)
0 0 025

—0.4107044479981856 .04697336433775339 .238144195138839
B= | 0.6196573513907207 —0.1877927019856355—-0.5178992870836935
0.6449431690452238 .0213170903183015 .217841280627102

0.05713560994297492 —0.006513435024601166—-0.02551474781712300
—0.08462384368043302 .M09647081879315406 .@90402965694018
—0.06604312939516946 .M07528888421180750 —0.138833383586150

(25)
These matrices satisfy the normalization condition,
A-AT +B-BT =23, (26)
wherel 3 is the 3x 3 identity matrix.
The moments
= /dx xP ®k(x) (27)
can be calculated using Eq. (23),
Z Ann//dx xP @k (2x) + ZZ Bn: ke / dx xPg,(2x — k)
k=1 a=1
=27P 1ZA,WMW+2 p- 122 Bh:kaMpe (K)- (28)

k=1 a=1
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TABLE 11l
Lowest Order Edge Scaling Function Moments

p Mlp'o Mlp;l M;In'z
0 0.4579979924769402 0.8049908401438545 1.068750478910575
1 0 0.3828013424205878 1.570362138335678
2 0 0 2.444512694806293
3 0.1465181581638399 —0.5399850568182881 3.932629848953578
4 0.4552905009099832 —1.423442829785282 6.443219022311416
5 1.011352504926067 —2.903380061865061 10.63546210201256
6 1.938732345356721 —5.320657502573146 17.51075456849672
So,
2 3 2
L 1 -1
Mg, = Z(zp+ I —A) L Z Z By ke Mpa (K). (29)
n'=0 k=1 a=1

The moments for the first few values pfare tabulated in Table III.

IV. MULTIWAVELETS ON THE INTERVAL

Following Cohenet al. [13], a primitive set of edge wavelets may be constructed b
considering what is left over frondk(2x) after subtraction of the projection onto the
q)rl;’(x)i

2
Wr() = Op(20) — Y Op(x) / dx @ (2x) DL (X)

n'=0

1 2
= dL(2x) — > > Avn®p (x). (30)
n'=0

These functions are, by construction, orthogonal to all of the edge scaling fun®iams.

They are also orthogonal to all of the inner scaling functiging(x) and waveletsy , (X)

for k > 1. This is obviously true for thé, (x) terms since they are on the same scale

This can also be seen for the first term on the right-hand side by expressifg,the and

Yk« (X) fork > 1interms of thepy . (2x) for k > 2, all of which are orthogonal td)h(2x).
The orthogonal set of edge wavelets is constructed from linear combinations of th

functions,

2
WE) =Y Unr B (x). (31)
n'=0
These obey refinement relations analogous to Eq. (23),

2 3 2
WE) =D Far 520+ Y Y Grw $a(2x — K), (32)
n'=0

k=1 =1
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for which normalization and orthogonality to edge scaling functions requires

F-FT+G-G" =23, (33)
F-AT+G-B" =0. (34)

Furthermore, we ask that"(x) ~ x" asx — 0 in the same manner as was done for the
®L(x). The solutions to these equations are

2 0 0
U = | 3.878464922835441 .413290338144536 0 , (35)
25.57235065307173 297173655985489 1@334223619150

1 -—-0.8788148129103263 .052431713197289
F=|0 0453176620335777 —0.9281827547828538, (36)
0 0 0136673428165731

0.4107044479981856 —0.04697336433775339—-0.2238144195138839
G = [ 0.9092208447502303 .02501138342026960 —0.2966463953547730
0.03011480499895239 .393150708972995 —0.1843018711234421

—0.05713560994297492 .006513435024601166 .@r551474781712300
—0.1282310610857589 .01461828595776544 .0B38175618209714p.
—0.07120442861293362 .M08117274318014343 .@2101033424992004

37)

The corresponding edge wavelets are shown in Fig. 3.

2 I i |

FIG. 3. Orthogonal left-hand edge wavelek$ (x) behaving ax" nearx = 0.



CARTESIAN AND CURVILINEAR MULTIWAVELETS 367

Because of the symmetry of the underlying basis, a right-hand boundary can be sin
accommodated by using the mirror images ofdit,ax) and\y['; () [13] . Thus, all functions
necessary for maintaining approximation order 3 in the presence of left-hand edges, ri
hand edges, or both have been obtained. The one caveat is that it is assumed that, for
intervals, there are sufficient inner functions that the left-hand and right-hand edge functi
do not overlap.

V. LINEAR MOMENTS AND GENERAL PROJECTION INTEGRALS

For expansion of general functionfs(x), itis necessary to resort to approximate method
for the evaluation of the projection integrals. If projections on a fine staee accurately
calculated, the scaling function and wavelet projections on coarser scales may be obte
using the two-scale recursions. In the frequently used Mallat algorithm [45] for sinc
wavelet systems, the levdlintegrations are approximated by sampfe&/2”) under the
assumption that (x) is slowly varying relative to this scale. This has the strong convenien
that the lowpass and highpass recursions can be iterated starting directly from the
sequence. Sufficient accuracy is not always obtained for the wavelet and scaling func
coefficients on the various scales however [33, 34], and there is not a natural generaliz:
to the case of multiwavelet families, which need multiple input data streams. Both of th
issues may be addressed by prefiltering of the input sequence of samples [30, 47, 59
68-70], to borrow from the language of signal processing.

A projection-based prefiltering using polynomial interpolation has been shown
markedly improve accuracy for nonsingular functioh&) in either single wavelet [33,
34] or multiwavelet [32] families using a few samples that fall within the neighborhood
each of the level} scaling functions. For a particular valuelgfone approximate$ (x) in

terms of its samples at positiorgkg, 0 =1,2,...,r,
r
FOO~ > Lakg() f (Xokg)- (38)
q=1

In the most common circumstance, the positions are equally spaced and have the forn

k+s+q—1

>3 (39)

Xikq =

wheres is a constant shift which may be chosen as convenient in aligning the sam
positions with respect to the suppdetR”, (k + 3)/2’] of ¢k, . However, itis not necessary
inthe following derivations for the points to be distributed regularly. In any casé, #igx)
are Lagrange interpolating polynomials of order 1,

r

X — XJykq
B ! S “o
g#q " Ikd a

takingthe value 1 at = x;xqand 0 atthe other sample points. Equation (38) is an equality f
f (x) inthe form of a polynomial of order up to— 1 and an approximate equality otherwise.
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From this form, we obtain a numerical quadrature approximation for the projection integre

(Poke | F) 2D @3k T (Xokg)- (41)

g=1
Here thew 1 are the quadrature weights, which may be expressed in terms of the mome
in Eq. (8) and derivatives of the Lagrange polynomials,

r-1

—3/2—3p Mpa (=9) k+38
Oakaq =) 27 papl L(JpK)Q< 2 ) “2
p=0 ’

Each of the terms in Eq. (42) is factored into a moment which depends on scaling funct
characteristics and an algebraic part which depends on thexgiig).(The moments need
to be evaluated only once.

Frequently it will be the case that the setsxgiq for neighboring values df will over-
lap. That is, an overall grid (regularly or irregularly spaced) will be specified with a tot
number of samples on the order of the number of scaling functions to be included on
finest level. From this set are chosequadrature points in the neighborhood of eagh, .

In the common case that the samples are uniformly spaced as in Eq. (39), the Lagre
derivatives and quadrature coefficients are the same for all valdearaf need to be cal-
culated only once. As an example, taking sample points fpr symmetrically distributed
atx = (k+1/2)/2, (k +3/2)/27, (k +5/2)/27, one calculates the weights; 11 =
wik13 = (7T—2v10)/24-2% ,w3x12=1— (7T—24/10)/12- 20, w3521 = w3k 23 =
(V6—-+19/12-27 wyx22 =0.

Accuracy on scal¢ is gained by calculating the scaling function projections at finer initia
levels J and using the two-scale relations iteratively to obtain the coarser scale expans
coefficients. For uniformly spaced samples, the error of any particular coefficient in t
multiresolution analysis is usually asymptotically proportional td'2though symmetric
distributions of sample points will improve this to "+ for oddr [32]. In practice,
calculation of the projection integrals may require different densities of sample points (.
different finest levelsd) in different locations for the same degree of accuracy. It thel
becomes advantageous to use an adaptive wavelet quadrature scheme such as that dis
for single wavelet families in Johnsa al. [34], where the integrals for ranges of valles
are treated in batches to maintain the linear character of the sampling relative to the nun
of included scaling functions.

The addition of the edge scaling functions only slightly complicates the picture. For ec
n, a set of sample points;nq is chosen. These may, for instance, berthmints nearest
the edge regardless of the valuernfAside from notational changes, the differences are
primarily that the edge momenm',;n are used in Eq. (42) instead wf,, (—9), i.e.,

r
(@5, 1 1) ~ Y g f Xang), (43)
gq=1
r-1 M L
Whng = D_ 2P L (0). (44)
p=0 )

A similar form holds in the case of a right-hand edge.
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VI. BILINEAR MOMENTS AND GENERAL MATRIX ELEMENTS

For applications to quantum problems, it is necessary to have systematic means of ¢
uating Hamiltonian matrix elements in the multiwavelet basis. As for projection integre
linear in the basis functions, these bilinear integrals may be calculated by the combina
of scaling function quadrature on fine scales and recursion to coarser scales (see Jol
et al. [34], for the single wavelet case). One starts by evaluation of the special monon
moments,

foutpka = / dx s (X — OXPhy (X — K). (45)
0

Setting the lower integration limit to 0 has no consequence if at least one of the scal
functions vanishes there anyway, i.e., eitk@r ¢ > 0, but a truncation occurs K and¢
both have one of the values2 or —1. Through use of the two-scale relations in Eq. (1) or
both bra and ket scaling functions, one finds that these moments must satisfy

3 2 3 2
Mot pika =2 P77 Z Z Z Z Cospp'l ps2e+e/, s 2K+ o Okt (46)

=0 p=1k'=0a'=1

wherecy.q IS the @, a’) element of the matrixy.
Focusing first on the regular case that eitker £ > 0, we may use change of variables
in Eq. (45) to express each moment in the form

I'p; ¢B:ke =/dX¢ﬁ(X)(X+Z)p¢a(x—k+z)

p p !
= Z <p,> Zp—p rp’;Oﬁ:kfﬂ,aa (47)
p=0

so itis sufficient to consider thle= 0 case and to express all moments in Eq. (46) in terms ¢
those with first spatial index equal to zero. Thus, the number of independent quantities
must be determined is reduced .k, for —2 < k < 2. There are even more constraints,
however. From Eq. (45), it can be shown that there is a further relationship between
integrals for positive and negative valueskof

p
rpi0pi—ka = D <p) (—kP P00 k- (48)

oo \P

Also, the symmetry/antisymmetry of the Chui—Lian multiscaling functions leads to arelati
for fixedk,

P
lp:0,2:kl = Z <S/> k+3P P (=D 01k (49)

p'=0

Thus it is only necessary to find the moments kor 0 and fora > 8. One may solve
these equations for successive valuepofhe starting valuesp(= 0) being provided by
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TABLE IV

Scaling Function Matrix Elementsrpog.ka

p k Ipos:k1 I pork2 I p:02k2

0 k Sko 0 Sk.o

1 0 1.5 0.2513953839897815 1.5

1 1 0 —0.7078901071877632e-2 0

1 2 0 0.56760290068037941e-5 0

2 0 2.320425914524887 0.7541861519693444 2.356088676074920

2 1 —0.7058932129758992e-2 —0.2043311742771540e-1 0.8418566994621792e-2
2 2 —0.1049681338301419e-4 0.4160018853613721e-4 0.1660847650782450¢
3 0 3.691916615361994 1.731044277705884 3.852399042337138

3 1 —0.4235359277855395e-1 —0.3793828760959689e-1 0.5051140196773075e-1
3 2 —0.7872610037260640e-4 0.2056171598391129e-3 0.1245635738086838¢

the orthogonality relations,

r0,08:ke = k08 -

The first few essential matrix moments are given in Table IV.
For evaluation of the moments with truncated integrals, it is only necessary to retl
to Eqg. (46) for the various cases bf¢ = —2, —1 and replace those moments wklor
¢ > 0 by the values just calculated. The resulting inhomogeneous equations for the e
moments are then readily solved. From the accumulated bilinear moments, those invol
the primitive edge scaling functiordz% (X) may be calculated using Eg. (15), and then those
involving the orthogonal edge scaling functioqbg(x) may be calculated using Egs. (21)
and (22). The final moments come in two flavors,

p:n;m

o0
r;;n;ka = /dx XPOL(X) ke (X), n=0,1,2 k=12,
0

o0
rkb = /dx XPOL(X)PL(X), n=0,12 m=012,
0

given in Tables V and VI, respectively.

(50)

(51)

(52)

TABLE V
. . . L
Edge—Edge Scaling Function Matrix Elementsrp;n;m
n m p=0 p=1 p=2 p=3
0 O 1 0.2990514754096211 0.2662123389639531 0.3503025685821318
0 1 0 —0.2543568724785701 —0.4201074139897117 —0.6393816813968993
0 2 0 0.06562045428344967 —0.2128662044878927 0.5054843507387799
1 1 1 0.9221737384641544 1.052971930015515 1.411629796564526
1 2 0 —0.2312149291328620 —0.6322048667407890 —1.363804807971201
2 2 1 1.617302572198752 2.688321806415069 4.563829763649434
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TABLE VI

Mixed Scaling Function Matrix Elementsr .2
n k « p=1 p=2 p=3
0 1 1 -0.002343791357064710  —0.01124904571980595 —0.03947047214560973
0 1 2 0.0007305592353298863 0.00488861923960781 0.02060204766022266
o 2 1 0.1876503312276107e-5 0.6091049653125483e-5 0.1051208572573486¢
0o 2 2 —0.5835098282189144e-6 0.1214183772481723e-5 0.2004294288982571e
1 1 1 0.004069194912957392 0.02045406508253334 0.07407645110083808
1 1 2 —0.0003363996019236961 —0.005794132282634926 —0.03075961533726273
1 2 1 -0.3261767309182364e-5 —0.9217342837047419e-5 —0.7995661625196105e-5
1 2 2 0.2733383574047245e-6 —0.7540845629055856e-5 —0.6167944804718003e-4
2 1 1  -0.002060549154200186  —0.01720020152886713  —0.07855369208918476
2 1 2 —0.006677911494492028 —0.01682116081869723 —0.02106659248260412
2 2 1 1.652638376802516e-5 —0.5489237626273993e-5 —0.72144229812333357e-4
2 2 2 5.355076395925271e-5 0.4408363541712476e-4 0.00023025853816337

2Those forp = 0 vanish.

For more general functionfs(x), integrals bilinear in the regular scaling functions may be
calculated by quadrature in similar fashion as was accomplished above for linear integl

r
(Paepl Fld3ia) X Y 0iepikas T (Xaekg)- (53)
q=1

It is assumed that the positionsgq are the same for alt andg, but depend upon both
the bra and ket scaling function positioksand¢, as well as the scalé. Using Lagrange

interpolation off (x) as before and expanding around a prechosen pgiy2”’ leads to the

following form for the quadrature weights

r—1 o0
1
W3 08:ka:q = Z o L 3¢kq (%) Z_Jp/dx¢>w(x)(x — Nek) Pra (X)), (54)
p=0 " 0
r
X — X3rka'
Lang(0) = [[ 9 (55)

o XJekg — XJqu’.
The weights, therefore, can be evaluated in terms of linear combinations of the momq
I o:08:ke Calculated above, although the specific details depend upon which choice of s
nek IS made. This may be, for instance, an endpoint or centerpoint of the region of comn
support okpy, andg.s. Under most choices, one may at least assume translation-invarian
that is, ne is only a function of the differenck& — ¢. The same then becomes true of
wJ.e8:ka:q, SO ONE reduces the number of independent weights that must be calculate
a small number, no matter how many valuekand¢ are included. For those integrals
involving the edge functions, the weights are defined similarly, but in terms'pf, and
rlﬁzn;ka'

For the all-important issue of systematic accuracy, adaptive refinement is again requi
For the case of single wavelet families, a method was outlined by Jotetisain[34],
which maintains linear scaling with respect to the number of function samples that mus
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evaluated. Aside from the multiple scaling functions for each spatial index and the inclus
of special functions near the boundaries, the discussion given there also applies to the cu
work.

VII. KINETIC ENERGY MATRIX ELEMENTS AND REGULARIZATIONS

Itis also necessary to evaluate the basis set representation of the kinetic energy &perat
This is a second-order differential operator whose precise form depends on the coordin
employed. For a given wave functidn(x), expansion of the produ&t F (x) in the regular
multiwavelet basis requires insertion of a resolution of the identity operator, which tak
the form

+oo 400

I = Z Zldwka TES SRS kaa ) (¥ikal. (56)

k=—00 a=1 j=J k=—o00 a=1

In most Wavelet-Galerkin methods, it is assumed th& chosen to give sufficiently fine
resolution that the wavelet componentskafx) at that and finer scales may be neglected
The operatoK is then approximated by its projection on the scaling function subspac
and it is only necessary to calculate the matrix elemépigs |K ¢k, ). This procedure is
briefly described.

The particular differential operators that will be considered for the quantum mechani
applications are of the form < XP 3 d < With p an integer. We assumk= 0 without loss of
generality. Using mtegratlon by parts and neglecting wavelet components in the resolu
of the identity, the scaling function projections of such an operator applied to a functi
F (x) can be written as

d d
/dx@ﬂ(x)(——xpd )F(x) /dx{ ¢43(X):|Xp|:—F(X):|

+oo 2

Z deéﬂ ka/dx¢ka(X)F(X) (57)

k=—o00 a=1

where the latter integrals are the projection integrals discussed earlier and the new inte
are components of a hermitian matrix,

doope = / dx [dghes (/XX A () /X]. (58)

This is a band matrix in the spatial indices since the only nonzero elements occur
|k — ¢| < 2. The calculation of similar matrices in single scaling function bases has be
addressed by Beylkin [4] (see also Resnikoff and Wells [54]), and the generalization to
multiwavelet case is not difficult. First, under a shift of integration variable, the integrals
Eq. (58) can all be expressed in terms of integrals with vanishing first spatial index,

U per = / dX[dlos (X)/AXI(X + )P Ao o () /]

p p )
= Z (p/> ¢rF dp’§0ﬂ;kf&m (59)
p'=0
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so it is again only necessary to consider the 0 case. Using the refinement equations
one obtains the relations

dpopika = 2°°P Z Z Cer:ppr Z Z Cisaa Z <§/) ()PP dy.0p2k k-t (60)

v=0p'=1 —00'=1 p'=0

The symmetry of the full matrix under the interchan@gg) < (k) leads to

p
oo kp = ) (p,) (—K)P P dy0p:k.as (61)

p—o \P

allowing attention to be further restrictedkta- 0. A final constraint arises from the symme-
try and antisymmetry of the scaling functiopigs and¢,, respectively, under the reflection
X — 3—X,

p
dp;02k1 = z <§,) (k+3)P P (=1)Pdpy. o1k 2, (62)

p=0

making it possible to restrict attentiond&o> 3.

Equations (60)—(62) yield ahomogeneous system to which mustbe added inhomogen
constraints. These may be obtained from the equations for polynomial expansion. Fo
casep = 0, we start from the relation

(x- _> Y Y (k=3 )0 (63)

k a=1

Differentiating twice, we have
2
2=2 > ma (k - —)¢‘2>(x). (64)
k a=1

Projection ontapgz(x) and use of integration by parts on the right-hand side gives

2Mog = Z Z Mo, ( )do 0B:ker - (65)

k a=1

Sincemy = [1, 0]", only the = 1 equation is inhomogeneous. For differential operator
with higher p, we proceed in a slightly different manner,

_ 2 szm( g)%(x), (66)

k a=1

d d
d dX(X— 2> = po ! sz]ﬂ( > 7Xp ¢ka(x) (67)

k a=1

pmp_1,4(0) = Z Z My ( ) p:0B:ka - (68)

k a=1
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With these results, the banded scaling function matrikgs.., may be evaluated either
numerically or analytically. Within the scaling function subspace, this gives the exact re
resentations of the differential operators.

A caveat we wish to stress here is that all of the differential matrix elements conside
are defined with respect to the hermitian form where one derivative acts upon the bra anc
other upon the ket. For all functions which vanish at the endpoints of their support, integ
tion by parts can be employed so that both derivatives are acting upon the same function.
edge functions offer an exception to this, however, sibge)) = 2.18341568396798¢ 0.

In extension of the above methods to the integrals over the edge scaling functions, inte
tion by parts in thep = 0 case can lead to the appearance of surface terms which must
be neglected. In such a case, the form of the operator with derivatives split between bra
ket is the one that is to be calculated because, as pointed out in a similar situation by S|
[57], this is the form that enters the variational principle from which 8dmger's equation

is derived. This is, in any case, seen to be the natural choice to avoid non-Hermiticity of
kinetic energy operator.

For functionsF (x) containing components outside the scaling function subspace, e.
polynomials of higher than second order, the neglected wavelet components can bec
more significant. Thus, application of the matdy to the array of coefficients for the
function x® will not quite produce the projections for(d/dx)xP(d/dx)x3 = —3(p +
2)xP*+L, In practice, it is found that convergence of kinetic energy matrix elements wi
respect to scale refinement s quite slow compared to that for potential matrix elements u:
the Chui-Lian family. We attribute this fact to the derivative discontinuities which occt
for scaling functions and wavelets with such short suppor} [#8different approximate
operator may, in fact, be more appropriate (see Laeaal. [40]). (This is similar in
spirit to the use of higher-order operators to represent the kinetic energy in finite differel
schemes.) We have found that a somewhat better alternative is to consider a matrix simil
dp, but which is regularized by requiring it to take projectiongidahto those of-i (i + p —
2)x' P2 for powers exceeding 2. Such a matrix implicitly includes selective contribution:
from the neglected wavelets. Operationally, we may simply ask for a nfbgrljlxat has the
same form and symmetries dg as well as obeying

d d . . i+p—
/dx{&tbw(x)}xp&x' =—i(i+p- 1)/dx¢€ﬁ(x)x ez
+2 2 . .
= Z de;eﬁ;ka/dx¢ka(x)x'- (69)
k=0—-2 a=1

It again follows that it is sufficient to consider ory= 0. One finds using Eq. (8),

2

2
—i(i+p—Dmi i, 240 = Z Z d p:0p: ke Mir (K). (70)

k=—2 a=1

These inhomogeneous equations for the elentﬁmg,, ko take the place of using refinement
equations plus auxiliary inhomogeneous conditions. The poweisadillowed to vary from

i = 0 up to the maximum power for which the equations can be solved in each case:
for p=0andi <5 for p=1and 2. Forp = 2, two of the nine independent parameters
are undetermined, so the specific conditidps,.«1 = O are imposed fok = 1 and 2. Only
these regularized results, given in Table VII, are used in the calculations below.
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TABLE VII
Independent Elements of Regularized Matricesfp;og;ka

375

k B « p=0 p=1 p=2

0 1 1 4.977182345309676 7.465773517964514 3.226139691715332
0 1 2 0.0 2.942600803528535 8.827802410585606

0 2 2 18.63066834704280 27.94600252056420 —18.00780183338870

1 1 1 —2.463456034556223 —4.926912069112446 —5.707349338588092

1 1 2 3.199227390239490 6.576959085211076 1.428034437856777
1 2 2 4.491551106944728 8.983102213889456 —4.566217341489810

2 1 1 —0.02513513809861494 —0.06283784524653735 0.3236900266002465
2 1 2 0.04844069359172701 0.1193514161944246 —0.01750317784892953

2 2 2 0.08615408196204041 0.2153852049051010 0.326730135060306

For thosegs (¢ = 1 and 2) sharing support with the edge functigils extra terms

appear,

d
/[ ¢@ﬁ(x)} _xX dx
+2 2

_denZﬁ/dX¢n(X)X +) 0 dp ka/dx¢ka(x)x

k=1 a=1
In terms of the moments of both [Egs. (8) and (27)],

+2 2

—i(i 4+ p—DMijp2p(0) —denw b D dpepkaMia ().

n=0 k=1 a=1

d | pd i
/[&d)n(x)}x x> dx

dban/dxcbm(X)x +Zdenka/dx¢ka(x)x‘,

k=1 a=1

Similarly,

—i(+p-— 1>Mi+pfz.n — 8n08podi1 @5 (0)

= Zdth ML 4 Zden Mg (k).
m7

k=1 a=1

(71)

(72)

(73)

(74)

As mentioned for the nonregularized matrix elements, integration by parts has led t
surface term in one case that must not be neglected. The solutions to these equatior

given in Tables VIII and IX.

VIIl. PARTICLE IN A BOX

For quantum applications with hard potential walls, all of the elements are now in ple
for construction of the Hamiltonian matrix in a multiscaling function basis with automat
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TABLE VI

Independent Elements of Regularized Matricesl:,  *
n m p=0 p=1 p=2
0 0 9.435321907592814 4.466395237669606 0.1208309996876746
0 1 —5.014549953627489  —4.548532761501762 0.1996808707142588
0 2 1.160556431179330 2.968767888148979  —0.8042897709301313
1 1 6.502312157886537 7.796557414440308 1.656426462479337
1 2 —3.968423454492193  —7.065469376551835 —1.445969667202100
2 2 5.580657274342218 10.19346842076509 6.118635700564971

2 The others are obtained by symmetry.

solution of the boundary value conditions. The prototypical example is the square w
potential with infinitely high walls,

h? d2
0 O<x<a
V(x) = (76)

oo otherwise

The boundary conditions on the eigenfunctions a(@) = x(a) = 0. The solutions are
simple sine functions with eigenvalu€ = i2h?72/2mé&,i = 1,2,3, ... . The interval
from O toa is partitioned to include both left- and right-hand edge functionsiupairs of
inner functionsk =1,2,..., N anda = 1, 2. Including the endpoints, the total number
of grid points is therN + 5, the spacing i& = a/(N + 4), and the functions used are the
scaled functions.~Y?¢y, (x/A), and so forth. Since the edge functions were constructe
such that onlyd§ is nonzero at the left-hand boundary and its mirror imégeis nonzero

at the right-hand boundary, the boundary conditions are automatically satisfied by sim

TABLE IX

Elements of Regularized Matricesd;, .,
n k « p=0 p=1 p=2
0 1 1 —0.7871145892092598  —1.522789767466662 0.6767795864632790
0 1 2 1.127110132528552 2.249453980557797  —1.748999704782829
0 2 1 —0.01343060822421223 —0.03415517812499165  —0.0332761357618862
0 2 2 0.02350283961048365 0.05893703602596143 0.1098168202124811
1 1 1 1.689178406657409 3.290713670616233 0.1049313899444405
1 1 2 —2.369568352156211  —4.760660569793535 2.524228398688135
1 2 1 0.02662633916236833 0.06757167950484340 0.01558781677703667
1 2 2 —0.04717626850699945 —0.1180249606514474 —0.1886005096280935
2 1 1 —3.263500213100282  —6.471271469490617 —5.312326283193022
2 1 2 4.340521773746394 8.842019478577988 —0.009986675787782307
2 2 1 —0.03781790644683623 —0.09505439042299998 0.3053868856141527
2 2 2 0.07078631144103524 0.1753144330150280 0.07861762245597229




CARTESIAN AND CURVILINEAR MULTIWAVELETS 377

FIG. 4. Relative error for particle in a box eigenvalues as a function of the nuMtadmpairs of multiscaling
functions.

deleting these functions from the basis. There are tiNignPernal scaling functions and 4
edge functions included.

The fractional error in the eigenvalues is plotted in Fig. 4. It is seen that systeme
decrease in error is obtained for all eigenvalues except at the lowest valbesTofese
deviations from monotonic decrease are possible since the basis changes in goihg fro
toN + 1;i.e., the spacing changes fra(N + 4) toa/(N + 5). If one examines the error
as the spacing is decreased by a factor of 2 (Nes> 2N + 4) each time, then the con-
secutive bases are commensurate and the smaller basis is exactly contained within the |
basis through the recursion relations in Egs. (23)—(25). The eigenvalue error then decre
monotonically and is asymptotically proportionalita

One can use the methods developed above to handle numerically a wide variet)
potential shapes on the interval, with or without the infinite walls. With transition to
multiresolution basis including wavelets at different scales, one can efficiently accommaoc
strongly nonpolynomial behavior. For multidimensional problems in Cartesian coordinat
the generalization is immediate since the basis functions are just products of those fol
individual degrees of freedom.

IX. CURVILINEAR COORDINATES AND THE HYDROGEN ATOM

The hydrogen atom has so far provided a difficult testing ground for wavelet technolo
Three dimensional calculations [60] have very slow convergence because of the sing
nature of the potential, and even one-dimensional calculations [20, 22] with the poten
—1/|x| have only been carried to about three significant digits of accuracy. The natu
approach is to separate variables in, for example, spherical polar coordinates. (For s-wi
this is equivalent to the particular one-dimensional method of [22].) In atomic units a
using the variableg, z = cosf, andr, we have the eigenvalue equations

d2
4 Fm(¢) = mM?Fn(¢), 0<¢ <2, (77)
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1d ,od 1 m? _
|:_§d_z(1— z )d_Z + Em} ng(Z) =L+ 1)Qim(z)y -l<z<1, (78)
1d2 e+ 1 1
{_EWJFT_F]RM(U:_Z—anRn,g(r), 0<r < oo, (79)

with volume elementd¢, dz anddr, respectively. We examine each of these individually.

A. Azimuthal Angle

The first of these equations has the boundary conditions of continuify,cdnd its
derivative at the boundaries, i.&,(0) = Fn(27), F,(0) = F/,(27). In this situation, one
need go no further than to use the existing method of periodizing the multiscaling functio
i.e., allowing them to wrap at the domain edges. The edge functions constructed in this p
are not needed.

B. Polar Angle

Inthe second equation, we considerithe- 0 case for which the solutions are normalized
multiples of the Legendre polynomialBy = 1, P, = z, P, = 372/2 — 1/2, and so forth.
The boundary conditions are now regularity of the solution at the interval endpeints1,
automatically satisfied by the three left-hand edge functioms-at-1 and the three right-
hand edge functions at= +1. All of the derivative matrix elements can be expressed ii
terms of the integrals calculated above. Diagonalization of the banded matrix for differ
numbersN of pairs of inner multiscaling functions yields eigenvalues which are exact ft
the first three eigenvalues, i.e., those for which the eigenfunctions are completely in
multiscaling function subspace. The errors of higher eigenvalues, shown in Fig. 5, decre
systematically with increasiny (monotonically in this case). For sequences which halv
the spacings in each step, the error is found to be asymptotically proportiotfal to

FIG. 5. Relative error for Legendre eigenvalues as a function of the nurbef pairs of multiscaling
functions.
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C. Radius

The radial equation differs by virtue of possessing only one explicit domain edge, tl
atr = 0. One maychoosdor convenience to impose a right-hand edge at some valuge of
though this is not important for the present demonstration. The first-order singutarity
requires that we again exclude tbg basis function. (For the case of volume element
the eigenfunctions have leading ordét?.) Thus, only the two left-hand functiords! and
@5 are added to the regular multiscaling functions.

New bilinear integrals are required. The starting point is the generalization of the integi
I o:¢8:ke [EQ. (45)] between regular multiscaling functions to negative poyweThese func-
tions do not overlap the origin, so their integrals may be evaluated using regular quadra
on scaleJ as in Eq. (53) withf (r) = 1/r, followed by recursion to scalg = 0. Those
integrals involving the lowedt and¢ will still be more difficult to converge, however, and
are best calculated separately to higher order. (This is an example where adaptive wa
quadrature [34] would be of use, thoughitis not presently coded.) Those integrals involv
the edge functions can once more be calculated by using the edge recursions, substitutir
values determined for integrals involving only regular multiscaling functions, and solvil
the resulting inhomogeneous equations for those involving edge functions.

Table X shows the exact and calculated hydrogenic energies as functignd bé spac-
ing A may be varied for optimization of the eigenvalues, important since only a single sc
is used in the present calculations, and the eigenfunctions all have dramatically diffel
outward reaches (i.e., the expectation vglyencreases as? so that excited states quickly
become diffuse). Different scale optimization criteria are accordingly considered. The tf
column shows the results for an especially small scale withosen to minimize the 1s
eigenvalue. The multiscaling function basis is thus shown to be able to reproduce indi
ual eigenvalues to several significant figures, and more can be obtained systematicall
increasing the density of basis functions. Excited states will each require different optir
values ofi for a fixed number of basis functions. The fourth column has a significant
largerx chosen according to a more democratic simultaneous optimization of the first s
eral eigenvalues, balancing the density and range of basis functions to achieve erro
similar magnitude for each state.

The extensionto p, d, f. ., waves is also allowed by the same machinery. The presen
of the centrifugal barrier terny 1/r2 additionally requires discarding @}, the function
which is linear inr asr — 0. The matrix elements of/t2 are calculated using the same

TABLE X
Eigenvalues of s-Wave and p-Wave Hydrogenic States for Different Values of the
Important Scale Parameter A

s wave(? = 0) pwave(f =1)

n, En A =0.04 A =025 A =0.10 A =0.38

—0.50000000 —0.49999996 —0.49981972

—0.12500000 —0.12160942 —0.12498493 —0.12499987 —0.12493531
—0.05555556 0.01760954 —0.05555144 —0.05547890 —0.05553166
—0.03125000 0.22556305 —0.03124831 —0.02615612 —0.03123918
—0.02000000 0.50927990 —0.01998286 0.00837816 —0.01999428
—0.01388889 0.86504697 —0.01310821 0.05579317 —0.01388452

o0 WN PP
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methods as before within the truncated basis. Using two different values of the scale par
eter, again optimized according to different purposes, the results for the p wave are sh
in the last columns of Table X. These results are similar to those for the s wave, a situa
found for higher waves as well.

The currentapproach is not meantto apply directly to the solution of polyatomic electrol
structure problems [1, 6, 9, 26, 28, 29, 60, 66], for which uniform multidimensional gric
independent of the atomic positions have been used. (Nonuniform bases on irregular ¢
are also possible [26].) To use orthogonal compact support wavelets for such proble
special multidimensional quadratures have been investigated [48].

Although only the casen = 0 was explicitly addressed above, the associated Legend
equation in Eq. (78) fom > 0 can be treated in the same manner as the radial equation |
¢ > 0 since the algebraic singularities are of the same type. The essential difference is
existence of two boundaries rather than one.

X. DISCUSSION

It has been shown that orthogonal multiwavelet families may be used for quantum pr
lems with general potentials in a manner very similar to that taken for single wavelet famili
Numerical quadrature methods are able to construct accurately and efficiently the bar
potential matrices in the multiscaling function basis, the first step required before expanc
in a multiresolution representation. This allows the use of bases with more localized supj
and greater smoothness, whose members possess definite symmetry or antisymmetr
not have a left or right bias). It has been shown that all of the required integrals can
obtained by generalization of methods used for single wavelet families. The exception
have made is to use a regularized form for the kinetic energy operators in the multisca
function basis rather than the simple projection (this could also be done for single sca
function bases). The applications were made to the Chui-Lian [10] multiwavelets on-
interval [0,3] to be specific, but can be adapted to other multiwavelet families.

Edge scaling functions and wavelets have been derived in extension of the methods |
by Coheret al.[12, 13], and Monasse and Perrier [50, 51] for single wavelets. This allow
the approximation order of three (quadratic polynomials) to be obtained throughout a fir
interval or along a half-line. By judicious choice of the edge functions, one is able to sati
the boundary conditions of many typical equations of quantum mechanics. The same s
basis functions was then shown to be usable for either Cartesian and curvilinear degre
freedom.

Since this first demonstration has focused on standard problems with analytical soluti
for calibration, there may be the appearance of cracking a peanut with a sledgeham
The actual situation, however, is that the present numerical methods may be applied
large variety of coordinates and potential functions. The next important step for increas
adaptability is implementation of the multiresolution decomposition, i.e., to transform
the multiscale wavelet basis. As discussed by Bewial. [5] for single wavelet bases,
this changes the structure of the matrices so that the sparseness is partially destroyed.
solution to this problem is a redundant “nonstandard representation” for matrix operat
which streamlines matrix—vector multiplies. The nonstandard representation has alre
been used in numerical calculations by, e.qg., Fischer [20] and Goedecker [26], and gen:
izations have been discussed by Lipmtl.[42]. Its adaptation to the current multiwavelet
basis will be explored in future work.
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APPENDIX

The 2x 2 coefficient matrices for the Chui—Lian multiwavelet family used here are

. 1(10 3/10 5¢6—2¢E§ . 1(30—V66 5¢6—2Jﬁi
~ 40\5,/6-3/15 5-3V10 ~ 40\-5/6-7/15 15-3V10
1(%+3¢6 —&@+2Jﬁ) 1<m—3dﬁ —&@+2JE3
Co = — = — s
*T 40\5/6+7v15  15-3V10 ’ ~5/6+3/15  5-3/10
(A1)
g -t (5f 2J/15 10+ 3@) gL (—5J6+ 2J15 30+3V10 )
o= — = —
40\-5+3v10 5/6-3V15 40\15- 310 56 + 74/15
q 1(5J}4J? —%—3JE> g 1(&@—2&6 1&3¢E)
*T 40\ _154+3/10 5/6+ 7VI5 ~40\5-3/10 5/6-3/15/
(A2)
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