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It is shown how orthogonal compact-support multiwavelets may be used for the
solution of quantum mechanical eigenvalue problems subject to specific boundary
conditions. Special scaling functions and wavelets with convenient limiting behaviors
at the edges of an interval are constructed in analogy to earlier work on single wavelet
families. All of the integrals required for Hamiltonian matrix elements, involving both
regular and edge functions, are calculated efficiently through use of recursion and
quadrature methods. It is demonstrated through accurate eigenvalue determination
that both Cartesian and curvilinear degrees of freedom are readily accommodated
with such a basis, using as examples the particle in a box and the hydrogen atom in
spherical polar coordinates. c© 2001 Academic Press
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I. INTRODUCTION

The introduction of compact support wavelets by Daubechies [17, 18] raised the prospect
of solving partial differential equations with functions resembling finite elements, but with
automatic orthogonality and multiresolution properties. Previously, the development of gen-
eral algorithms based on orthogonal functions providing highly customizable resolution
would have seemed fantastic. At present, it merely seems difficult. A great deal of progress
has occurred in the last several years. For example, many different varieties of such wavelet
families [44] have now been derived, methods for calculation of integrals have been devel-
oped [4, 16, 34, 38, 51], and there are efficient means for dealing with operators expressed
in multiscale bases [5]. Early applications naturally gravitated toward differential equations
with strongly specific local behavior, e.g., differential equations modeling shock wave fronts
in fluids [25, 39, 41, 43, 56], which may be solved by Wavelet-Galerkin [25, 39, 41, 53, 55,
71] or Wavelet Collocation [3, 61, 62] methods.
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Our specific interest is in the application to quantum mechanical problems involving
atoms and molecules, for which much the same numerical machinery is needed. A num-
ber of quantum mechanical wavelet investigations have already been undertaken [1, 6,
9, 20–23, 26–29, 31, 34, 49, 60, 65, 66], though some of these studies have preferred
nonorthogonal wavelets for reasons concerning sampling properties, smoothness, and so
forth. Presently, somewhat ironically, one is probably more limited in the ability to use
the orthogonal compact-support wavelets, even though these are the functions that fueled
the initial widespread interest in wavelet applications. For example, it was not until 1996
(to our knowledge) that it was even demonstrated that Daubechies wavelets could be used
systematically in accurate eigenvalue determination for Hamiltonians with general classes
of potentials [49]. There are still residual issues however. The combination of orthogonality
and compact support properties disallows symmetry of the basis functions [18], leading
unavoidably to either a left or right bias on the support. Moreover, wavelets are gener-
ally defined along infinitely long Cartesian axes. This ignores the large number of physical
problems most naturally expressed in curvilinear coordinates, as well as Cartesian problems
possessing hard potential walls.

The issue of left–right democracy may be handled by adopting one of the wavelet vari-
ations that accommodates both compact support and symmetry properties. One of these,
biorthogonal wavelets, would unfortunately require giving up the hermiticity of the Hamil-
tonian matrix. Another variation, multiwavelets, offers symmetry, greater localization, and
hermiticity at the price of increasing the number of distinct functional shapes to be included
in the basis. Currently, the primary handicap to the use of multiwavelets is probably lack
of examples of their use, one of the problems addressed in this paper. The specific choice
made here is the multiwavelet family of Chui and Lian [10], symmetric and antisymmetric
pairs of functions defined on the interval [0,3]. All of the necessary tools for calculation of
the kinetic and potential energy matrix elements with this basis are given below, providing
a multiwavelet generalization of results for the single (or scalar) wavelet families [4, 16,
34, 38, 54].

The issue of curvilinear coordinates is important throughout a huge variety of electronic
and nuclear applications. One finds use made of spherical, parabolic, elliptical, and other
coordinates [52] in atomic physics, as well as radial and angular variables from valence
bond, Jacobi, hyperspherical [58], Radau [35], and several other types of coordinates arising
in molecular physics. In special cases, curvilinear coordinates are used because they allow a
separation of variables, but they are also frequently used because they simplify nonseparable
multidimensional problems (e.g., for reasons of symmetry). The lack of compact support
wavelets constructed specifically for use with curvilinear coordinates has appeared to be a
general limitation of wavelet techniques. In many cases, however, the differences offered
by curvilinear coordinates can be reduced to (i) a restriction of the domain of definition
to either a half-line or a finite interval and (ii) simple algebraic singularities at the domain
edge(s). The first point also occurs in Cartesian problems, such as the particle in a box, for
which the potential restricts motion to a finite interval. For single wavelet systems [2, 12,
13, 46, 50, 51] and, more recently, for biorthogonal multiwavelets [14], special functions
have been constructed that complement the regular basis functions in order to adapt the
multiresolution analysis adapted to a fixed interval. This approach is complementary to
the recent body of work on the use of Wavelet-Galerkin methods for partial differential
equations in bounded domains [7, 8, 11, 15, 19, 24, 36, 37, 63, 67].



358 JOHNSON, MACKEY, AND KINSEY

In this paper, a method similar to that of Monasse and Perrier [51] is used to construct
edge functions for the Chui–Lian multiwavelet basis. These “multiwavelets on the interval”
are suited to the satisfaction of one- and two-point boundary conditions for the exam-
ple quantum systems—the particle in a box and the angular and radial equations arising
from the separation of variables for the hydrogen atom—and many others. It has not been
possible previously to obtain eigenvalues for such problems with more than a few digits
of accuracy, even using single orthogonal wavelet families, much less multiwavelets. The
basis will also provide tailored resolution in solutions of the time-dependent Schr¨odinger
equation in curvilinear coordinates. The price we must pay for all this is the evaluation
of a significant number of key integrals involving differential and local operators and in-
volving Chui–Lian functions and their edge counterparts, even though symmetry properties
are used as much as possible to reduce the number of independent integrals required.
While these first demonstrations are specific to the Chui–Lian multiwavelet family, it is
expected that such evaluations for other wavelet or multiwavelet families can be largely
automated.

II. MULTIWAVELETS ON THE FULL LINE

The two scaling functions{φ1(x), φ2(x)} and the two wavelets{ψ1(x), ψ2(x)} defined
by Chui and Lian are shown in Fig. 1. All of these functions have unit L2 norm. Letting

FIG. 1. Scaling functions and wavelets of the Chui–Lian multiwavelet family on the interval [0,3].
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φ̂ = (φ1, φ2)
T andψ̂ = (ψ1, ψ2)

T , these vectors obey the two-scale relations

φ̂(x) =
3∑

k=0

ckφ̂(2x − k), (1)

ψ̂(x) =
3∑

k=0

dkφ̂(2x − k), (2)

representing a matrix version of the relations obeyed by the Daubechies wavelet families.
The coefficientsck and dk are 2× 2 constant matrices given in the Appendix. Square-
normalized copies of these functions that are squeezed by 1/2 j and shifted byk/2 j for
integral j andk are given by

φ jkα(x) = 2 j/2φα(2
j x − k), (3)

ψ jkα(x) = 2 j/2ψα(2
j x − k). (4)

A complete orthonormal basis can be specified by choosing a coarsest scale, which we shall
denote for convenience asj = 0, and including allj = 0 scaling functions and allj ≥ 0
wavelets. Thus, a functionf (x) expanded in this set takes the form

f (x) =
+∞∑

k=−∞

2∑
α=1

〈φ0kα | f 〉φ0kα(x)+
+∞∑
j=0

+∞∑
k=−∞

2∑
α=1

〈ψ jkα | f 〉ψ jkα(x). (5)

(In the following we shall use the conventions that two subscripts impliesj = 0, i.e.,
φkα ≡ φ0kα andψkα ≡ ψ0kα, while one subscript impliesj = 0 andk = 0, i.e.,φα ≡ φ00α

andψα ≡ ψ00α.) Finite basis calculations are then implemented by retaining only some
maximum numberJ of scales (0≤ j < J) and restricting each sum overk to include only
those values in a region or regions of interest,

f (x) ≈
∑

k

2∑
α=1

〈φkα | f 〉φkα(x)+
J−1∑
j=0

∑
k

2∑
α=1

〈ψ jkα | f 〉ψ jkα(x). (6)

A constraint that enters into the constuction of the multiwavelet system is that Eq. (1) rep-
resents coarsening (lowpass filtering), and Eq. (2) represents selection of details (highpass
filtering). This is partially ensured by requiring that the multiwaveletsψα are orthogonal
to low-order polynomials. As a consequence, these polynomials are precisely contained
within the space of the scaling functions. We have the exact equality

P(x) =
∑

k

2∑
α=1

〈φkα | P〉φkα(x), (7)

provided thatP(x) is at most a quadratic polynomial. The Chui–Lian multiwavelet family
is said to be ofapproximation orderthree since the three powersx0, x1, andx2 can be
exactly expressed as linear combinations of the multiscaling functions [10]. Evaluation of
the projections of powers onto the multiscaling functions can be accomplished by use of
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Eq. (1), as shown in a separate paper [32]. We define the moments

mpα(κ) =
∫

dx xpφα(x − κ) =
∫

dx(x + κ)pφα(x), (8)

where the shiftκ is not necessarily integral. Then Eq. (1) implies that the vector equation

m̂p(κ) =
(

mp1

mp2

)
(κ) = 1

2p

p∑
p′=0

(
p
p′

)
µp−p′(κ)m̂p′(κ) (9)

must be satisfied, where the matrix

µp(κ) =
1

2

3∑
k=0

ck(κ + k)p (10)

is easily calculated. In the particular casep = 0, Eq. (9) reduces to

m̂0 = µ0 · m̂0, (11)

i.e.,m̂0 is an eigenvector ofµ0 with eigenvalue 1. For the current multiwavelets, the initial
moments are given by ˆm0 = [1, 0]T , independent ofκ. All higher projections follow from
Eq. (9). By choosingκ = −3/2, symmetry gives the simplifications that odd moments
vanish forα = 1 and even moments vanish forα = 2. The first few nonzero moments are
given in Table I. For more generalκ, the moments may be calculated in terms of these:

mpα(κ) =
∫

dx

(
x − 3

2
+ κ + 3

2

)p

φα(x)

=
p∑

p′=0

(
p
p′

)(
κ + 3

2

)p−p′ ∫
dx

(
x − 3

2

)p′

φα(y)

=
p∑

p′=0

(
p
p′

)(
κ + 3

2

)p−p′

mp′α

(
−3

2

)
. (12)

TABLE I

Lowest-Order Nonzero Moments of the Chui–Lian Scaling Functions forκ = −3/2

p m2p,1(−3/2) m2p+1,2(−3/2)

0 1

√
15−√6

6

1
7 − 2

√
10

12

319
√

15 − 505
√

6

1992

2
1011− 324

√
10

1328

24937441
√

15 − 40418461
√

6

105392736

3
199096521− 63748426

√
10

163944256

1349132289413
√

15 − 2159493518895
√

6

3384231014784
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III. MULTISCALING FUNCTIONS ON THE INTERVAL

For situations where it is desired to use a basis restricted to a finite or semi-infinite interval,
most orthogonal wavelet families are deficient. The problem comes from the staggered
supports of the scaling functions and wavelets. There will always be some basis functions
which straddle any boundary. Retaining such basis functions is not appropriate since they
have tails outside the region of interest (with longer tails for coarser scales). On the other
hand, neglecting them is also inappropriate since the tails inside the region are critical for
the basis to reproduce low-order polynomials near the edges. A common workaround for
a finite interval is to use periodized scaling functions and wavelets which wrap around the
domain edges [59]. However, this has the undesirable effect of artificially destroying some
of the very localization which was such an appealing aspect of wavelet bases.

An alternative pursued by Meyer [46] was to include just the inner tails as independent
basis functions, but these were not generally orthogonal to each other and were subject to
problems of numerical precision. Subsequent work by Cohenet al.[12, 13], showed how to
use the restrictions of the primitive edge scaling functions and wavelets in linear combination
to obtain special edge functions orthogonal both to each other and to all the basis functions
away from the edge. Monasse and Perrier [50, 51], extending results of Auscher [2], showed
a similar construction which gave special edge functions adapted naturally to the solution of
particular (e.g., Dirichlet or Neuman) differential equation boundary conditions. The latter
approach is further extended in the present paper to orthogonal multiwavelets, working
with the specific case of the Chui–Lian family and specializing to boundary conditions
commonly met in the standard problems of quantum mechanics.

We start by considering a left-hand boundary situated atx = 0. The functionsφkα and
ψkα for k ≥ 0 are entirely to the right, while those fork = −1 and−2 straddle the origin.
The monomial expansions take the forms

xp =
2∑
α=1

∑
k

mpα(k)φkα(x), p = 0, 1, 2. (13)

If the sum overk in Eq. (13) starts atk = 0, then the equality holds for allx ≥ 2. To obtain
equality for all x ≥ 0, we only need to add the right-hand tails of thek = −1 and−2
functions. In terms of the Heaviside function2(x) = 1 for x > 0, 0 forx < 0,

2(x)xp =
∞∑

k=−2

2∑
α=1

mpα(k)2(x)φkα(x). (14)

At least three edge scaling functions are needed to restore approximation order three for
all x ≥ 0. We choose these to be of the same length as the other scaling functions, having
support [0, 3]. In analogy to the scalar wavelet procedure adopted by Cohenet al. [13], the
k = 0 functions (for which [0, 3] is the support) are borrowed for this purpose instead of
being included in the set of regular scaling functions. Thus, in terms of the three independent
left-hand edge functions,

φL
p (x) =

0∑
k=−2

2∑
α=1

mpα(k)2(x)φkα(x), (15)
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Eq. (14) can be rewritten as

2(x)xp = φL
p (x)+

∞∑
k=1

2∑
α=1

mpα(k)φkα(x). (16)

These functions are orthogonal to all of theφkα for k ≥ 1 by construction, but they are not
orthogonal to each other. It is first necessary to find the overlap matrix with integrations
restricted tox≥ 0,

λ`,β;k,α =
∫

dx2(x)φ`;β(x)φk;α(x). (17)

Using the recursion relation in Eq. (1) for both scaling functions leads to the identity

λ`,β;k,α = 1

2

3∑
`′=0

2∑
β ′=1

3∑
k′=0

2∑
α′=1

c`′,β,β ′ck′,α,α′λ2`+`′,β ′;2k+k′,α′ . (18)

All integrals for which either of the first or third subscripts is≥ 0 reduce to the standard
orthogonality integrals. Equations (18) then become a series of inhomogeneous equations
for those with both subscripts <0. Solving for these truncated integrals yields the values
appearing in Table II. According to Eq. (15), the overlaps among theφL

p (x) are then given by

Sp′ p =
∫

dxφL
p′(x)φ

L
p (x)

=
0∑

`=−2

2∑
β=1

0∑
k=−2

2∑
α=1

mqβ(`)mpα(k)λ`β;kα. (19)

TABLE II

Upper Triangle Overlap Matrix Elements λ`,β;k,α for k, ` < 0

` β k α λ`,β;k,α

−2 1 −2 1
10 − 3

√
10

40

−2 1 −2 2
47
√

15 − 70
√

6

750

−2 1 −1 1 0

−2 1 −1 2
−35
√

6 − 14
√

15

9000

−2 2 −2 2
710− 209

√
10

3000

−2 2 −1 1
−35
√

6 − 14
√

15

9000

−2 2 −1 2 0

−1 1 −1 1
3 + 3

√
10

40

−1 1 −1 2
47
√

15 − 70
√

6

750

−1 2 −1 2
2290+ 209

√
10

3000
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This matrix takes the simple form

SL =


2 27−√10

12
11−√10

3

27−√10
12

11−√10
3

1276− 185
√

10
180

11−√10
3

1276− 185
√

10
180

136− 26
√

10
9

 . (20)

The final step in constructing edge scaling functions is to make them orthogonal to each
other. Monasse and Perrier discuss the possibility of different choices based on different
types of boundary conditions (e.g., Dirichlet or Neuman). Our particular interest is to use
these functions for second-order differential equations of quantum mechanics, in which case
it is frequently convenient to be able to specify the wave function’s lowest-order (indicial)
power of x as x→ 0. It is therefore natural for our purposes to start Gramm–Schmitt
orthogonalization with thex2 function, orthogonalize thex1 function with respect to it,
and then to orthogonalize thex0 solution to the previous two. Defining the orthogonalized
functions to be8L

n (x), n = 0, 1, 2, we have

8̂L = Tφ̂L , (21)

where

T =
2.183415683967980−4.591492847717150 1.994990649446751

0 2.612321037529930 −1.678162710805578
0 0 0.4090794873451215

, (22)

and whereT is upper-diagonal. The resulting orthogonal edge functions are shown in Fig. 2.
The recursion satisfied by the edge scaling functions is necessarily mixed with the regular

scaling functions. This can be seen by tracking back through the cumulative transformations
to the definitions of the scaling function tails, for which Eq. (1) applies. We use the notation
χ[0,3](x) for the unit pulse between 0 and 3, i.e.,2(x)2(3− x). Using Eqs. (1), (16), and

FIG. 2. Orthogonal left-hand edge scaling functions8L
n (x) behaving asxn nearx = 0.
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the inverse of Eq. (21),̂φL = T−18̂L , we find

8L
n (x) =

∑
p

Tnpφ
L
p (x) = χ[0,3](x)

∑
p

Tnp

[
xp −

2∑
k=1

2∑
α=1

mpα(k)φα(x − k)

]

= χ[0,3](x)

[∑
p

Tnp
1

2p
φL

p (2x)+
∑

p

Tnp
1

2p

∞∑
k=1

2∑
α=1

mpα(k)φα(2x − k)

−
∑

p

Tnp

2∑
k=1

2∑
α=1

mpα(k)
3∑

k′=0

2∑
α′=1

ckα;k′α′φα′(2x − 2k− k′)

]

=
2∑

p=0

Anp8
L
p(2x)+

3∑
k=1

2∑
α=1

Bn;kαφα(2x − k), (23)

where

A =
1 0.8788148129103263−0.05243171319728923

0 0.5 1.025572512628694
0 0 0.25

 , (24)

B =
−0.4107044479981856 0.04697336433775339 0.2238144195138839

0.6196573513907207 −0.1877927019856355−0.5178992870836935
0.6449431690452238 0.1213170903183015 1.217841280627102

0.05713560994297492 −0.006513435024601166−0.02551474781712300
−0.08462384368043302 0.009647081879315406 0.05904029656940184
−0.06604312939516946 0.007528888421180750 −0.1388333835861504

.
(25)

These matrices satisfy the normalization condition,

A · AT + B · BT = 2I3, (26)

whereI3 is the 3× 3 identity matrix.
The moments

M L
pn =

∫
dx xp8L

n (x) (27)

can be calculated using Eq. (23),

M L
pn =

2∑
n′=0

Ann′

∫
dx xp8L

n′(2x)+
3∑

k=1

2∑
α=1

Bn;kα
∫

dx xpφα(2x − k)

= 2−p−1
2∑

n′=0

Ann′M
L
pn′ + 2−p−1

3∑
k=1

2∑
α=1

Bn;kαmpα(k)· (28)
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TABLE III

Lowest Order Edge Scaling Function Moments

p ML
p0 M L

p1 M L
p2

0 0.4579979924769402 0.8049908401438545 1.068750478910575
1 0 0.3828013424205878 1.570362138335678
2 0 0 2.444512694806293
3 0.1465181581638399 −0.5399850568182881 3.932629848953578
4 0.4552905009099832 −1.423442829785282 6.443219022311416
5 1.011352504926067 −2.903380061865061 10.63546210201256
6 1.938732345356721 −5.320657502573146 17.51075456849672

So,

M L
pn =

2∑
n′=0

(2p+1I − A)−1
nn′

3∑
k=1

2∑
α=1

Bn′;kαmpα(k). (29)

The moments for the first few values ofp are tabulated in Table III.

IV. MULTIWAVELETS ON THE INTERVAL

Following Cohenet al. [13], a primitive set of edge wavelets may be constructed by
considering what is left over from8L

n (2x) after subtraction of the projection onto the
8L

n′(x),

9̃L
n (x) = 8L

n (2x)−
2∑

n′=0

8L
n′(x)

∫
dx′8L

n (2x′)8L
n′(x

′)

= 8L
n (2x)− 1

2

2∑
n′=0

An′n8
L
n′(x). (30)

These functions are, by construction, orthogonal to all of the edge scaling functions8L
n′(x).

They are also orthogonal to all of the inner scaling functionsφk,α(x) and waveletsψk,α(x)
for k ≥ 1. This is obviously true for the8L

n′(x) terms since they are on the same scale.
This can also be seen for the first term on the right-hand side by expressing theφk,α(x) and
ψk,α(x) for k ≥ 1 in terms of theφk,α(2x) for k ≥ 2, all of which are orthogonal to8L

n (2x).
The orthogonal set of edge wavelets is constructed from linear combinations of these

functions,

9L
n (x) =

2∑
n′=0

Unn′9̃
L
n′(x). (31)

These obey refinement relations analogous to Eq. (23),

9L
n (x) =

2∑
n′=0

Fnn′ 8
L
n′(2x)+

3∑
k=1

2∑
α=1

Gn;kα φα(2x − k), (32)
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for which normalization and orthogonality to edge scaling functions requires

F · FT +G ·GT = 2I3, (33)

F · AT +G · BT = 0. (34)

Furthermore, we ask that9L
n (x) ∼ xn asx→ 0 in the same manner as was done for the

8L
n (x). The solutions to these equations are

U =
 2 0 0

3.878464922835441 4.413290338144536 0
25.57235065307173 29.97173655985489 14.63342236191503

 , (35)

F =
1 −0.8788148129103263 0.05243171319728923

0 0.453176620335777 −0.9281827547828538
0 0 0.1366734281657313

 , (36)

G =
 0.4107044479981856−0.04697336433775339−0.2238144195138839

0.9092208447502303 0.02501138342026960 −0.2966463953547730
0.03011480499895239 1.393150708972995 −0.1843018711234421

−0.05713560994297492 0.006513435024601166 0.02551474781712300
−0.1282310610857589 0.01461828595776544 0.03381756182097140
−0.07120442861293362 0.008117274318014343 0.02101033424992004

 .
(37)

The corresponding edge wavelets are shown in Fig. 3.

FIG. 3. Orthogonal left-hand edge wavelets9 L
n (x) behaving asxn nearx = 0.
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Because of the symmetry of the underlying basis, a right-hand boundary can be simply
accommodated by using the mirror images of the8L

p(x)and9L
p (x) [13] . Thus, all functions

necessary for maintaining approximation order 3 in the presence of left-hand edges, right-
hand edges, or both have been obtained. The one caveat is that it is assumed that, for finite
intervals, there are sufficient inner functions that the left-hand and right-hand edge functions
do not overlap.

V. LINEAR MOMENTS AND GENERAL PROJECTION INTEGRALS

For expansion of general functions,f (x), it is necessary to resort to approximate methods
for the evaluation of the projection integrals. If projections on a fine scaleJ are accurately
calculated, the scaling function and wavelet projections on coarser scales may be obtained
using the two-scale recursions. In the frequently used Mallat algorithm [45] for single
wavelet systems, the level-J integrations are approximated by samplesf (k/2J) under the
assumption thatf (x) is slowly varying relative to this scale. This has the strong convenience
that the lowpass and highpass recursions can be iterated starting directly from the data
sequence. Sufficient accuracy is not always obtained for the wavelet and scaling function
coefficients on the various scales however [33, 34], and there is not a natural generalization
to the case of multiwavelet families, which need multiple input data streams. Both of these
issues may be addressed by prefiltering of the input sequence of samples [30, 47, 59, 64,
68–70], to borrow from the language of signal processing.

A projection-based prefiltering using polynomial interpolation has been shown to
markedly improve accuracy for nonsingular functionsf (x) in either single wavelet [33,
34] or multiwavelet [32] families using a few samples that fall within the neighborhood of
each of the level-J scaling functions. For a particular value ofk, one approximatesf (x) in
terms of its samples at positionsxJkq,q = 1, 2, . . . , r ,

f (x) ≈
r∑

q=1

L Jkq(x) f (xJkq). (38)

In the most common circumstance, the positions are equally spaced and have the form

xJkq = k+ δ + q − 1

2J
, (39)

whereδ is a constant shift which may be chosen as convenient in aligning the sample
positions with respect to the support [k/2J, (k+ 3)/2J ] of φJkα. However, it is not necessary
in the following derivations for the points to be distributed regularly. In any case, theL Jkq(x)
are Lagrange interpolating polynomials of orderr − 1,

L Jkq(x) =
r∏

q′ 6=q

x − xJkq′

xJkq− xJkq′
, (40)

taking the value 1 atx = xJkq and 0 at the other sample points. Equation (38) is an equality for
f (x) in the form of a polynomial of order up tor − 1 and an approximate equality otherwise.
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From this form, we obtain a numerical quadrature approximation for the projection integrals,

〈φJkα | f 〉 ≈
r∑

q=1

ωJkαq f (xJkq). (41)

Here theωJkαq are the quadrature weights, which may be expressed in terms of the moments
in Eq. (8) and derivatives of the Lagrange polynomials,

ωJkαq =
r−1∑
p=0

2−J/2−J p mpα(−δ)
p!

L(p)Jkq

(
k+ δ

2J

)
. (42)

Each of the terms in Eq. (42) is factored into a moment which depends on scaling function
characteristics and an algebraic part which depends on the grid (xJkq). The moments need
to be evaluated only once.

Frequently it will be the case that the sets ofxJkq for neighboring values ofk will over-
lap. That is, an overall grid (regularly or irregularly spaced) will be specified with a total
number of samples on the order of the number of scaling functions to be included on the
finest level. From this set are chosenr quadrature points in the neighborhood of eachφJkα.
In the common case that the samples are uniformly spaced as in Eq. (39), the Lagrange
derivatives and quadrature coefficients are the same for all values ofk and need to be cal-
culated only once. As an example, taking sample points forφJkα symmetrically distributed
at x = (k+ 1/2)/2J, (k+ 3/2)/2J, (k+ 5/2)/2J , one calculates the weightsωJ,k,1,1 =
ωJ,k,1,3 = (7− 2

√
10)/24 · 2J, ωJ,k,1,2 = 1− (7− 2

√
10)/12 · 2J, ωJ,k,2,1 = −ωJ,k,2,3 =

(
√

6−√15)/12 · 2J, ωJ,k,2,2 = 0.
Accuracy on scalej is gained by calculating the scaling function projections at finer initial

levels J and using the two-scale relations iteratively to obtain the coarser scale expansion
coefficients. For uniformly spaced samples, the error of any particular coefficient in the
multiresolution analysis is usually asymptotically proportional to 2−Jr , though symmetric
distributions of sample points will improve this to 2−J(r+1) for odd r [32]. In practice,
calculation of the projection integrals may require different densities of sample points (i.e.,
different finest levelsJ) in different locations for the same degree of accuracy. It then
becomes advantageous to use an adaptive wavelet quadrature scheme such as that discussed
for single wavelet families in Johnsonet al. [34], where the integrals for ranges of valuesk
are treated in batches to maintain the linear character of the sampling relative to the number
of included scaling functions.

The addition of the edge scaling functions only slightly complicates the picture. For each
n, a set of sample pointsxJnq is chosen. These may, for instance, be ther points nearest
the edge regardless of the value ofn. Aside from notational changes, the differences are
primarily that the edge momentsM L

pn are used in Eq. (42) instead ofmpα(−δ), i.e.,

〈
8L

Jn | f
〉 ≈ r∑

q=1

ωL
Jnq f (xJnq), (43)

ωL
Jnq =

r−1∑
p=0

2−J/2−J p
M L

pn

p!
L(p)Jnq(0). (44)

A similar form holds in the case of a right-hand edge.



CARTESIAN AND CURVILINEAR MULTIWAVELETS 369

VI. BILINEAR MOMENTS AND GENERAL MATRIX ELEMENTS

For applications to quantum problems, it is necessary to have systematic means of eval-
uating Hamiltonian matrix elements in the multiwavelet basis. As for projection integrals
linear in the basis functions, these bilinear integrals may be calculated by the combination
of scaling function quadrature on fine scales and recursion to coarser scales (see Johnson
et al. [34], for the single wavelet case). One starts by evaluation of the special monomial
moments,

r p;`β;kα =
∞∫

0

dxφβ(x − `)xpφα(x − k). (45)

Setting the lower integration limit to 0 has no consequence if at least one of the scaling
functions vanishes there anyway, i.e., eitherk or ` ≥ 0, but a truncation occurs ifk and`
both have one of the values−2 or−1. Through use of the two-scale relations in Eq. (1) on
both bra and ket scaling functions, one finds that these moments must satisfy

r p;`,β;k,α = 2−p−1
3∑

`′=0

2∑
β ′=1

3∑
k′=0

2∑
α′=1

c`′;ββ ′r p;2`+`′, β ′;2k+k′,α′ck′;αα′ , (46)

whereck′;αα′ is the (α, α′) element of the matrixck.
Focusing first on the regular case that eitherk or ` ≥ 0, we may use change of variables

in Eq. (45) to express each moment in the form

r p;`β;kα =
∫

dxφβ(x)(x + `)pφα(x − k+ `)

=
p∑

p′=0

(
p
p′

)
`p−p′r p′;0β;k−`,α, (47)

so it is sufficient to consider thè= 0 case and to express all moments in Eq. (46) in terms of
those with first spatial index equal to zero. Thus, the number of independent quantities that
must be determined is reduced tor p;0β;kα for−2≤ k ≤ 2. There are even more constraints,
however. From Eq. (45), it can be shown that there is a further relationship between the
integrals for positive and negative values ofk,

r p;0β;−kα =
p∑

p′=0

(
p
p′

)
(−k)p−p′r p′;0α; kβ. (48)

Also, the symmetry/antisymmetry of the Chui–Lian multiscaling functions leads to a relation
for fixedk,

r p;0,2;k1 =
p∑

p′=0

(
p
p′

)
(k+ 3)p−p′(−1)p′+1r p′;0,1;k2. (49)

Thus it is only necessary to find the moments fork ≥ 0 and forα ≥ β. One may solve
these equations for successive values ofp, the starting values (p = 0) being provided by
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TABLE IV

Scaling Function Matrix Elements rp;0β;kα

p k rp;01;k1 r p;01;k2 r p;02;k2

0 k δk,0 0 δk,0

1 0 1.5 0.2513953839897815 1.5
1 1 0 −0.7078901071877632e-2 0
1 2 0 0.56760290068037941e-5 0
2 0 2.320425914524887 0.7541861519693444 2.356088676074920
2 1 −0.7058932129758992e-2 −0.2043311742771540e-1 0.8418566994621792e-2
2 2 −0.1049681338301419e-4 0.4160018853613721e-4 0.1660847650782450e-4
3 0 3.691916615361994 1.731044277705884 3.852399042337138
3 1 −0.4235359277855395e-1 −0.3793828760959689e-1 0.5051140196773075e-1
3 2 −0.7872610037260640e-4 0.2056171598391129e-3 0.1245635738086838e-3

the orthogonality relations,

r0;0β;kα = δk0δαβ. (50)

The first few essential matrix moments are given in Table IV.
For evaluation of the moments with truncated integrals, it is only necessary to return

to Eq. (46) for the various cases ofk, ` = −2,−1 and replace those moments withk or
` ≥ 0 by the values just calculated. The resulting inhomogeneous equations for the edge
moments are then readily solved. From the accumulated bilinear moments, those involving
the primitive edge scaling functionsφL

p (x)may be calculated using Eq. (15), and then those
involving the orthogonal edge scaling functions8L

p(x) may be calculated using Eqs. (21)
and (22). The final moments come in two flavors,

r LL
p;n;m =

∞∫
0

dx xp8L
n (x)8

L
m(x), n = 0, 1, 2, m= 0, 1, 2, (51)

r L
p;n;kα =

∞∫
0

dx xp8L
n (x)φkα(x), n = 0, 1, 2, k = 1, 2, (52)

given in Tables V and VI, respectively.

TABLE V

Edge—Edge Scaling Function Matrix Elementsr LL
p;n;m

n m p= 0 p = 1 p = 2 p = 3

0 0 1 0.2990514754096211 0.2662123389639531 0.3503025685821318
0 1 0 −0.2543568724785701 −0.4201074139897117 −0.6393816813968993
0 2 0 0.06562045428344967 −0.2128662044878927 0.5054843507387799
1 1 1 0.9221737384641544 1.052971930015515 1.411629796564526
1 2 0 −0.2312149291328620 −0.6322048667407890 −1.363804807971201
2 2 1 1.617302572198752 2.688321806415069 4.563829763649434
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TABLE VI

Mixed Scaling Function Matrix Elements r L
p;n;kα

a

n k α p = 1 p = 2 p = 3

0 1 1 −0.002343791357064710 −0.01124904571980595 −0.03947047214560973
0 1 2 0.0007305592353298863 0.00488861923960781 0.02060204766022266
0 2 1 0.1876503312276107e-5 0.6091049653125483e-5 0.1051208572573486e-4
0 2 2 −0.5835098282189144e-6 0.1214183772481723e-5 0.2004294288982571e-4
1 1 1 0.004069194912957392 0.02045406508253334 0.07407645110083808
1 1 2 −0.0003363996019236961 −0.005794132282634926 −0.03075961533726273
1 2 1 −0.3261767309182364e-5 −0.9217342837047419e-5 −0.7995661625196105e-5
1 2 2 0.2733383574047245e-6 −0.7540845629055856e-5 −0.6167944804718003e-4
2 1 1 −0.002060549154200186 −0.01720020152886713 −0.07855369208918476
2 1 2 −0.006677911494492028 −0.01682116081869723 −0.02106659248260412
2 2 1 1.652638376802516e-5 −0.5489237626273993e-5 −0.72144229812333357e-4
2 2 2 5.355076395925271e-5 0.4408363541712476e-4 0.0002302585381633707

a Those forp = 0 vanish.

For more general functionsf (x), integrals bilinear in the regular scaling functions may be
calculated by quadrature in similar fashion as was accomplished above for linear integrals,

〈φJ`β | f |φJkα〉 ≈
r∑

q=1

ωJ;`β;kα;q f (xJ`kq). (53)

It is assumed that the positionsxJ`kq are the same for allα andβ, but depend upon both
the bra and ket scaling function positions,k and`, as well as the scaleJ. Using Lagrange
interpolation of f (x) as before and expanding around a prechosen pointη`k/2J leads to the
following form for the quadrature weights

ωJ;`β;kα;q =
r−1∑
p=0

1

p!
L J`kq

(
η`k

2J

)
2−J p

∞∫
0

dxφ`β(x)(x − η`k)pφkα(x), (54)

L J`kq(x) =
r∏

q′ 6=q

x − xJ`kq′

xJ`kq − xJ`kq′
. (55)

The weights, therefore, can be evaluated in terms of linear combinations of the moments
r p;0β;kα calculated above, although the specific details depend upon which choice of shift
η`k is made. This may be, for instance, an endpoint or centerpoint of the region of common
support ofφkα andφ`β . Under most choices, one may at least assume translation-invariance;
that is,η`k is only a function of the differencek− `. The same then becomes true of
ωJ;`β;kα;q, so one reduces the number of independent weights that must be calculated to
a small number, no matter how many values ofk and` are included. For those integrals
involving the edge functions, the weights are defined similarly, but in terms ofr LL

p;n;m and
r L

p;n;kα.
For the all-important issue of systematic accuracy, adaptive refinement is again required.

For the case of single wavelet families, a method was outlined by Johnsonet al. [34],
which maintains linear scaling with respect to the number of function samples that must be
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evaluated. Aside from the multiple scaling functions for each spatial index and the inclusion
of special functions near the boundaries, the discussion given there also applies to the current
work.

VII. KINETIC ENERGY MATRIX ELEMENTS AND REGULARIZATIONS

It is also necessary to evaluate the basis set representation of the kinetic energy operatorK .
This is a second-order differential operator whose precise form depends on the coordinates
employed. For a given wave functionF(x), expansion of the productK F(x) in the regular
multiwavelet basis requires insertion of a resolution of the identity operator, which takes
the form

I =
+∞∑

k=−∞

2∑
α=1

|φJkα〉〈φJkα| +
+∞∑
j=J

+∞∑
k=−∞

2∑
α=1

|ψ jkα〉〈ψ jkα|. (56)

In most Wavelet-Galerkin methods, it is assumed thatJ is chosen to give sufficiently fine
resolution that the wavelet components ofF(x) at that and finer scales may be neglected.
The operatorK is then approximated by its projection on the scaling function subspace,
and it is only necessary to calculate the matrix elements〈φJ`β |K |φJkα〉. This procedure is
briefly described.

The particular differential operators that will be considered for the quantum mechanical
applications are of the form− d

dx xp d
dx with p an integer. We assumeJ = 0 without loss of

generality. Using integration by parts and neglecting wavelet components in the resolution
of the identity, the scaling function projections of such an operator applied to a function
F(x) can be written as∫

dxφ`β(x)

(
− d

dx
xp d

dx

)
F(x) =

∫
dx

[
d

dx
φ`β(x)

]
xp

[
d

dx
F(x)

]

≈
+∞∑

k=−∞

2∑
α=1

dp;`β;kα
∫

dxφkα(x)F(x), (57)

where the latter integrals are the projection integrals discussed earlier and the new integrals
are components of a hermitian matrix,

dp;`β;kα =
∫

dx [dφ`β(x)/dx]xp[dφkα(x)/dx]. (58)

This is a band matrix in the spatial indices since the only nonzero elements occur for
|k− `| ≤ 2. The calculation of similar matrices in single scaling function bases has been
addressed by Beylkin [4] (see also Resnikoff and Wells [54]), and the generalization to the
multiwavelet case is not difficult. First, under a shift of integration variable, the integrals in
Eq. (58) can all be expressed in terms of integrals with vanishing first spatial index,

dp;`β;kα =
∫

dx[dφ0β(x)/dx](x + `)p[dφk−`,α(x)/dx]

=
p∑

p′=0

(
p
p′

)
`p−p′dp′;0β;k−`,α, (59)
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so it is again only necessary to consider the` = 0 case. Using the refinement equations,
one obtains the relations

dp;0β;kα = 21−p
3∑

`′=0

2∑
β ′=1

c`′;ββ ′
3∑

k′=0

2∑
α′=1

ck′;αα′
p∑

p′=0

(
p
p′

)
(`′)p−p′dp′;0β ′;2k+k′−`′,α′ . (60)

The symmetry of the full matrix under the interchange(`β)↔ (kα) leads to

dp;0α;−k,β =
p∑

p′=0

(
p
p′

)
(−k)p−p′dp′;0β;k,α, (61)

allowing attention to be further restricted tok ≥ 0. A final constraint arises from the symme-
try and antisymmetry of the scaling functionsφ1 andφ2, respectively, under the reflection
x→ 3− x,

dp;02;k1 =
p∑

p′=0

(
p
p′

)
(k+ 3)p−p′(−1)p′+1dp′;01;k,2, (62)

making it possible to restrict attention toα ≥ β.
Equations (60)–(62) yield a homogeneous system to which must be added inhomogeneous

constraints. These may be obtained from the equations for polynomial expansion. For the
casep = 0, we start from the relation(

x − 3

2

)2

=
∑

k

2∑
α=1

m2α

(
k− 3

2

)
φkα(x). (63)

Differentiating twice, we have

2=
∑

k

2∑
α=1

m2α

(
k− 3

2

)
φ
(2)
kα (x). (64)

Projection ontoφβ(x) and use of integration by parts on the right-hand side gives

2m0β = −
∑

k

2∑
α=1

m2α

(
k− 3

2

)
d0;0β;kα. (65)

Sincem̂0 = [1, 0]T , only theβ = 1 equation is inhomogeneous. For differential operators
with higher p, we proceed in a slightly different manner,

x − 3

2
=
∑

k

2∑
α=1

m1α

(
k− 3

2

)
φkα(x), (66)

d

dx
xp d

dx

(
x − 3

2

)
= pxp−1 =

∑
k

2∑
α=1

m1α

(
k− 3

2

)
d

dx
xp d

dx
φkα(x), (67)

pmp−1,β(0) = −
∑

k

2∑
α=1

m1α

(
k− 3

2

)
dp;0β;kα. (68)
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With these results, the banded scaling function matricesdp;`β;kα may be evaluated either
numerically or analytically. Within the scaling function subspace, this gives the exact rep-
resentations of the differential operators.

A caveat we wish to stress here is that all of the differential matrix elements considered
are defined with respect to the hermitian form where one derivative acts upon the bra and the
other upon the ket. For all functions which vanish at the endpoints of their support, integra-
tion by parts can be employed so that both derivatives are acting upon the same function. The
edge functions offer an exception to this, however, since8L

0 (0) = 2.1834156839679806= 0.
In extension of the above methods to the integrals over the edge scaling functions, integra-
tion by parts in thep = 0 case can lead to the appearance of surface terms which must not
be neglected. In such a case, the form of the operator with derivatives split between bra and
ket is the one that is to be calculated because, as pointed out in a similar situation by Slater
[57], this is the form that enters the variational principle from which Schr¨odinger’s equation
is derived. This is, in any case, seen to be the natural choice to avoid non-Hermiticity of the
kinetic energy operator.

For functionsF(x) containing components outside the scaling function subspace, e.g.,
polynomials of higher than second order, the neglected wavelet components can become
more significant. Thus, application of the matrixdp to the array of coefficients for the
function x3 will not quite produce the projections for−(d/dx)xp(d/dx)x3 = −3(p+
2)xp+1. In practice, it is found that convergence of kinetic energy matrix elements with
respect to scale refinement is quite slow compared to that for potential matrix elements using
the Chui–Lian family. We attribute this fact to the derivative discontinuities which occur
for scaling functions and wavelets with such short support [18] . A different approximate
operator may, in fact, be more appropriate (see Lazaaret al. [40]). (This is similar in
spirit to the use of higher-order operators to represent the kinetic energy in finite difference
schemes.) We have found that a somewhat better alternative is to consider a matrix similar to
dp, but which is regularized by requiring it to take projections ofxi into those of−i (i + p−
2)xi+p−2 for powersi exceeding 2. Such a matrix implicitly includes selective contributions
from the neglected wavelets. Operationally, we may simply ask for a matrixd̃p that has the
same form and symmetries asdp as well as obeying∫

dx

[
d

dx
φ`β(x)

]
xp d

dx
xi = −i (i + p− 1)

∫
dxφ`β(x)x

i+p−2

=
`+2∑

k=`−2

2∑
α=1

d̃p;`β;kα
∫

dxφkα(x)x
i . (69)

It again follows that it is sufficient to consider only` = 0. One finds using Eq. (8),

−i (i + p− 1)mi+p−2,β(0) =
2∑

k=−2

2∑
α=1

d̃p;0β;kαmiα(k). (70)

These inhomogeneous equations for the elementsd̃p;0β;kα take the place of using refinement
equations plus auxiliary inhomogeneous conditions. The power ofx is allowed to vary from
i = 0 up to the maximum power for which the equations can be solved in each case:i ≤ 7
for p = 0 andi ≤ 5 for p = 1 and 2. Forp = 2, two of the nine independent parameters
are undetermined, so the specific conditionsd̃2;02;k1 = 0 are imposed fork = 1 and 2. Only
these regularized results, given in Table VII, are used in the calculations below.



CARTESIAN AND CURVILINEAR MULTIWAVELETS 375

TABLE VII

Independent Elements of Regularized Matricesd̃p;0β;kα

k β α p = 0 p = 1 p = 2

0 1 1 4.977182345309676 7.465773517964514 3.226139691715332
0 1 2 0.0 2.942600803528535 8.827802410585606
0 2 2 18.63066834704280 27.94600252056420 −18.00780183338870
1 1 1 −2.463456034556223 −4.926912069112446 −5.707349338588092
1 1 2 3.199227390239490 6.576959085211076 1.428034437856777
1 2 2 4.491551106944728 8.983102213889456 −4.566217341489810
2 1 1 −0.02513513809861494 −0.06283784524653735 0.3236900266002465
2 1 2 0.04844069359172701 0.1193514161944246 −0.01750317784892953
2 2 2 0.08615408196204041 0.2153852049051010 0.3267301350603069

For thoseφ`β (` = 1 and 2) sharing support with the edge functionsφL
n , extra terms

appear, ∫ [
d

dx
φ`β(x)

]
xp d

dx
xi dx

=
2∑

n=0

d̃L
p;n;`β

∫
dxφL

n (x)x
i +

`+2∑
k=1

2∑
α=1

d̃p;`β;kα
∫

dxφkα(x)x
i . (71)

In terms of the moments of both [Eqs. (8) and (27)],

−i (i + p− 1)mi+p−2,β(`) =
2∑

n=0

d̃L
p;n;`βM L

in +
`+2∑
k=1

2∑
α=1

d̃p;`β;kαmiα(k). (72)

Similarly, ∫ [
d

dx
8L

n (x)

]
xp d

dx
xi dx

=
2∑

m=0

d̃LL
p;n;m

∫
dx8L

m(x)x
i +

2∑
k=1

2∑
α=1

d̃L
p;n;kα

∫
dxφkα(x)x

i , (73)

− i (i + p− 1)Mi+p−2,n − δn0δp0δi 18
L
n (0)

=
2∑

m=0

d̃LL
p;n;mM L

im +
2∑

k=1

2∑
α=1

d̃L
p;n;kαmiα(k). (74)

As mentioned for the nonregularized matrix elements, integration by parts has led to a
surface term in one case that must not be neglected. The solutions to these equations are
given in Tables VIII and IX.

VIII. PARTICLE IN A BOX

For quantum applications with hard potential walls, all of the elements are now in place
for construction of the Hamiltonian matrix in a multiscaling function basis with automatic
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TABLE VIII

Independent Elements of Regularized MatricesdLL
p;n;m

a

n m p= 0 p = 1 p = 2

0 0 9.435321907592814 4.466395237669606 0.1208309996876746
0 1 −5.914549953627489 −4.548532761501762 0.1996808707142588
0 2 1.160556431179330 2.968767888148979 −0.8042897709301313
1 1 6.502312157886537 7.796557414440308 1.656426462479337
1 2 −3.968423454492193 −7.065469376551835 −1.445969667202100
2 2 5.580657274342218 10.19346842076509 6.118635700564971

a The others are obtained by symmetry.

solution of the boundary value conditions. The prototypical example is the square well
potential with infinitely high walls,

H = − h̄2

2m

d2

dx2
+ V(x), (75)

V(x) =
{

0 0≤ x ≤ a

∞ otherwise.
(76)

The boundary conditions on the eigenfunctions areχ(0) = χ(a) = 0. The solutions are
simple sine functions with eigenvaluesEi = i 2h̄2π2/2ma2, i = 1, 2, 3, . . . . The interval
from 0 toa is partitioned to include both left- and right-hand edge functions andN pairs of
inner functions,k = 1, 2, . . . , N andα = 1, 2. Including the endpoints, the total number
of grid points is thenN + 5, the spacing isλ = a/(N + 4), and the functions used are the
scaled functionsλ−1/2φkα(x/λ), and so forth. Since the edge functions were constructed
such that only8L

0 is nonzero at the left-hand boundary and its mirror image8R
0 is nonzero

at the right-hand boundary, the boundary conditions are automatically satisfied by simply

TABLE IX

Elements of Regularized MatricesdL
p:n:kα

n k α p = 0 p = 1 p = 2

0 1 1 −0.7871145892092598 −1.522789767466662 0.6767795864632790
0 1 2 1.127110132528552 2.249453980557797 −1.748999704782829
0 2 1 −0.01343060822421223 −0.03415517812499165 −0.0332761357618862
0 2 2 0.02350283961048365 0.05893703602596143 0.1098168202124811
1 1 1 1.689178406657409 3.290713670616233 0.1049313899444405
1 1 2 −2.369568352156211 −4.760660569793535 2.524228398688135
1 2 1 0.02662633916236833 0.06757167950484340 0.01558781677703667
1 2 2 −0.04717626850699945 −0.1180249606514474 −0.1886005096280935
2 1 1 −3.263500213100282 −6.471271469490617 −5.312326283193022
2 1 2 4.340521773746394 8.842019478577988 −0.009986675787782307
2 2 1 −0.03781790644683623 −0.09505439042299998 0.3053868856141527
2 2 2 0.07078631144103524 0.1753144330150280 0.07861762245597229
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FIG. 4. Relative error for particle in a box eigenvalues as a function of the numberN of pairs of multiscaling
functions.

deleting these functions from the basis. There are thus 2N internal scaling functions and 4
edge functions included.

The fractional error in the eigenvalues is plotted in Fig. 4. It is seen that systematic
decrease in error is obtained for all eigenvalues except at the lowest values ofN. These
deviations from monotonic decrease are possible since the basis changes in going fromN
to N + 1; i.e., the spacing changes froma/(N + 4) toa/(N + 5). If one examines the error
as the spacing is decreased by a factor of 2 (i.e.,N → 2N + 4) each time, then the con-
secutive bases are commensurate and the smaller basis is exactly contained within the larger
basis through the recursion relations in Eqs. (23)–(25). The eigenvalue error then decreases
monotonically and is asymptotically proportional toλ5.

One can use the methods developed above to handle numerically a wide variety of
potential shapes on the interval, with or without the infinite walls. With transition to a
multiresolution basis including wavelets at different scales, one can efficiently accommodate
strongly nonpolynomial behavior. For multidimensional problems in Cartesian coordinates,
the generalization is immediate since the basis functions are just products of those for the
individual degrees of freedom.

IX. CURVILINEAR COORDINATES AND THE HYDROGEN ATOM

The hydrogen atom has so far provided a difficult testing ground for wavelet technology.
Three dimensional calculations [60] have very slow convergence because of the singular
nature of the potential, and even one-dimensional calculations [20, 22] with the potential
−1/|x| have only been carried to about three significant digits of accuracy. The natural
approach is to separate variables in, for example, spherical polar coordinates. (For s-waves,
this is equivalent to the particular one-dimensional method of [22].) In atomic units and
using the variablesφ, z= cosθ , andr , we have the eigenvalue equations

− d2

dφ2
Fm(φ) = m2Fm(φ), 0≤ φ ≤ 2π, (77)
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[
− 1

2

d

dz
(1− z2)

d

dz
+ 1

2

m2

1− z2

]
Q`m(z) = `(`+ 1)Q`m(z), −1≤ z≤ 1, (78)

[
−1

2

d2

dr2
+ `(`+ 1)

2r 2
− 1

r

]
Rnr `(r ) = −

1

2n2
r

Rnr `(r ), 0≤ r <∞, (79)

with volume elementsdφ, dz, anddr , respectively. We examine each of these individually.

A. Azimuthal Angle

The first of these equations has the boundary conditions of continuity ofFm and its
derivative at the boundaries, i.e.,Fm(0) = Fm(2π), F ′m(0) = F ′m(2π). In this situation, one
need go no further than to use the existing method of periodizing the multiscaling functions,
i.e., allowing them to wrap at the domain edges. The edge functions constructed in this paper
are not needed.

B. Polar Angle

In the second equation, we consider them= 0 case for which the solutions are normalized
multiples of the Legendre polynomials,P0 = 1, P1 = z, P2 = 3z2/2− 1/2, and so forth.
The boundary conditions are now regularity of the solution at the interval endpointsz= ±1,
automatically satisfied by the three left-hand edge functions atz= −1 and the three right-
hand edge functions atz= +1. All of the derivative matrix elements can be expressed in
terms of the integrals calculated above. Diagonalization of the banded matrix for different
numbersN of pairs of inner multiscaling functions yields eigenvalues which are exact for
the first three eigenvalues, i.e., those for which the eigenfunctions are completely in the
multiscaling function subspace. The errors of higher eigenvalues, shown in Fig. 5, decrease
systematically with increasingN (monotonically in this case). For sequences which halve
the spacings in each step, the error is found to be asymptotically proportional toλ6.

FIG. 5. Relative error for Legendre eigenvalues as a function of the numberN of pairs of multiscaling
functions.
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C. Radius

The radial equation differs by virtue of possessing only one explicit domain edge, that
at r = 0. One maychoosefor convenience to impose a right-hand edge at some value ofr ,
though this is not important for the present demonstration. The first-order singularity−1/r
requires that we again exclude the8L

0 basis function. (For the case of volume elementdr ,
the eigenfunctions have leading orderr `+1.) Thus, only the two left-hand functions8L

1 and
8L

2 are added to the regular multiscaling functions.
New bilinear integrals are required. The starting point is the generalization of the integrals

r p;`β;kα [Eq. (45)] between regular multiscaling functions to negative powersp. These func-
tions do not overlap the origin, so their integrals may be evaluated using regular quadrature
on scaleJ as in Eq. (53) withf (r ) = 1/r , followed by recursion to scalej = 0. Those
integrals involving the lowestk and` will still be more difficult to converge, however, and
are best calculated separately to higher order. (This is an example where adaptive wavelet
quadrature [34] would be of use, though it is not presently coded.) Those integrals involving
the edge functions can once more be calculated by using the edge recursions, substituting the
values determined for integrals involving only regular multiscaling functions, and solving
the resulting inhomogeneous equations for those involving edge functions.

Table X shows the exact and calculated hydrogenic energies as functions ofnr . The spac-
ingλmay be varied for optimization of the eigenvalues, important since only a single scale
is used in the present calculations, and the eigenfunctions all have dramatically different
outward reaches (i.e., the expectation value〈r 〉 increases asn2

r so that excited states quickly
become diffuse). Different scale optimization criteria are accordingly considered. The third
column shows the results for an especially small scale withλ chosen to minimize the 1s
eigenvalue. The multiscaling function basis is thus shown to be able to reproduce individ-
ual eigenvalues to several significant figures, and more can be obtained systematically by
increasing the density of basis functions. Excited states will each require different optimal
values ofλ for a fixed number of basis functions. The fourth column has a significantly
largerλ chosen according to a more democratic simultaneous optimization of the first sev-
eral eigenvalues, balancing the density and range of basis functions to achieve errors of
similar magnitude for each state.

The extension to p, d, f,. . . , waves is also allowed by the same machinery. The presence
of the centrifugal barrier term∼1/r 2 additionally requires discarding of8L

1 , the function
which is linear inr asr → 0. The matrix elements of 1/r 2 are calculated using the same

TABLE X

Eigenvalues of s-Wave and p-Wave Hydrogenic States for Different Values of the

Important Scale Parameterλ

s wave(` = 0) p wave(` = 1)

nr Enr λ = 0.04 λ = 0.25 λ = 0.10 λ = 0.38

1 −0.50000000 −0.49999996 −0.49981972
2 −0.12500000 −0.12160942 −0.12498493 −0.12499987 −0.12493531
3 −0.05555556 0.01760954 −0.05555144 −0.05547890 −0.05553166
4 −0.03125000 0.22556305 −0.03124831 −0.02615612 −0.03123918
5 −0.02000000 0.50927990 −0.01998286 0.00837816 −0.01999428
6 −0.01388889 0.86504697 −0.01310821 0.05579317 −0.01388452
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methods as before within the truncated basis. Using two different values of the scale param-
eter, again optimized according to different purposes, the results for the p wave are shown
in the last columns of Table X. These results are similar to those for the s wave, a situation
found for higher waves as well.

The current approach is not meant to apply directly to the solution of polyatomic electronic
structure problems [1, 6, 9, 26, 28, 29, 60, 66], for which uniform multidimensional grids
independent of the atomic positions have been used. (Nonuniform bases on irregular grids
are also possible [26].) To use orthogonal compact support wavelets for such problems,
special multidimensional quadratures have been investigated [48].

Although only the casem= 0 was explicitly addressed above, the associated Legendre
equation in Eq. (78) form> 0 can be treated in the same manner as the radial equation for
` > 0 since the algebraic singularities are of the same type. The essential difference is the
existence of two boundaries rather than one.

X. DISCUSSION

It has been shown that orthogonal multiwavelet families may be used for quantum prob-
lems with general potentials in a manner very similar to that taken for single wavelet families.
Numerical quadrature methods are able to construct accurately and efficiently the banded
potential matrices in the multiscaling function basis, the first step required before expanding
in a multiresolution representation. This allows the use of bases with more localized support
and greater smoothness, whose members possess definite symmetry or antisymmetry (do
not have a left or right bias). It has been shown that all of the required integrals can be
obtained by generalization of methods used for single wavelet families. The exception we
have made is to use a regularized form for the kinetic energy operators in the multiscaling
function basis rather than the simple projection (this could also be done for single scaling
function bases). The applications were made to the Chui–Lian [10] multiwavelets on the
interval [0,3] to be specific, but can be adapted to other multiwavelet families.

Edge scaling functions and wavelets have been derived in extension of the methods used
by Cohenet al. [12, 13], and Monasse and Perrier [50, 51] for single wavelets. This allows
the approximation order of three (quadratic polynomials) to be obtained throughout a finite
interval or along a half-line. By judicious choice of the edge functions, one is able to satisfy
the boundary conditions of many typical equations of quantum mechanics. The same set of
basis functions was then shown to be usable for either Cartesian and curvilinear degrees of
freedom.

Since this first demonstration has focused on standard problems with analytical solutions
for calibration, there may be the appearance of cracking a peanut with a sledgehammer.
The actual situation, however, is that the present numerical methods may be applied to a
large variety of coordinates and potential functions. The next important step for increasing
adaptability is implementation of the multiresolution decomposition, i.e., to transform to
the multiscale wavelet basis. As discussed by Beylkinet al. [5] for single wavelet bases,
this changes the structure of the matrices so that the sparseness is partially destroyed. Their
solution to this problem is a redundant “nonstandard representation” for matrix operators
which streamlines matrix–vector multiplies. The nonstandard representation has already
been used in numerical calculations by, e.g., Fischer [20] and Goedecker [26], and general-
izations have been discussed by Lippertet al.[42]. Its adaptation to the current multiwavelet
basis will be explored in future work.
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APPENDIX

The 2× 2 coefficient matrices for the Chui–Lian multiwavelet family used here are

c0 = 1

40

(
10− 3

√
10 5

√
6− 2

√
15

5
√

6− 3
√

15 5− 3
√

10

)
, c1 = 1

40

(
30−√10 5

√
6− 2

√
15

−5
√

6− 7
√

15 15− 3
√

10

)
,

c2 = 1

40

(
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√
10 −5

√
6+ 2

√
15

5
√
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√

15 15− 3
√

10

)
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40
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10− 3

√
10 −5
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15
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6+ 3
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15 5− 3
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10
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,
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d0 = 1
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√
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(A2)
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